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Abstract— The aim of this article is to introduce a novel
sparse controller design for the temperature control of an
experimental walking beam furnace in steel industry. Adequate
tracking of temperature references is essential for the quality
of the heated slabs. However, the design of the temperature
control is hindered by the multivariable (non-square) dynamic
behavior of the furnace. These dynamics include significant
loop interactions and time delays. Furthermore, a novel data-
driven model, based on real life experimental data that relies
on a subspace state representation in a closed loop approach
is introduced. In the sequel, the derived model is utilized to
investigate the controller’s structure. By applying the relative
gain array approach a decentralized feedback controller is
designed. However, in spite of the optimal and sparse design
of the controller, there exists interaction between loops. By
analyzing the interaction between the inputs-outputs with the
Σ2 Gramian-based interaction methodology, a decoupled multi-
variable controller is implied. The simulation result, based
on the experimental modeling of the furnace, shows that the
controller can successfully decrease the interaction between the
loops and track the reference temperature set-points.

I. INTRODUCTION

Walking Beam Furnaces (WBFs) are broadly utilized
in the modern steel industry to reheat the steel slabs to
prescribed temperatures in order to change its mechanical
properties. In a WBF, the slabs are walked in a cyclic move-
ment, through heating zones of different temperatures. From
an energy efficiency perspective, this process plant is one
of the most energy consuming systems in the steel industry
[1]. Therefore, an efficient controller is needed to minimize
the energy cost for the generated heat. Additionally, in the
WBF, the temperature has an important effect on the energy
expenditure and the quality of the heated slabs and thus the
corresponding regulation of the temperature, for each specific
zone of the furnace, is desired.

In order to control the temperature in an optimal approach,
initially a reliable model of the furnace is needed and this
is the aim of the first contribution of this article. In the
previous literature, a variety of corresponding models have
been investigated. More specifically, in [2] Computational
Fluid Dynamics (CFD) techniques were used for modeling,
however the presented approach is computationally expen-
sive for large industrial cases and it has more suitable results
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at steady state, while missing to represent the transient
behavior of the process.

From another approach, a considerable research in math-
ematical modeling, based on the physical properties, has
been performed in the last decades. A simplified model, by
considering first principles, was obtained in [3]. However,
this model does not consider the radiative heat transfer and
complex phenomena, such as turbulences. A model with less
computationally complexity was introduced in [4], which is
only valid for steady state operation. A novel mathematical
model, based on the zone method of radiation analysis and
combing this model with CFD has been performed in [5],
while it was extended to a 3D approach in [6]. Although
several studies have been performed for the physical model-
ing, little attention has been paid for the black box modeling.
Since unknown disturbances effect the WBF distinctly, black
box modeling may be a better approach for this industrial
plant, as in the works presented in [7] and [8] where the
Auto-Regressive with an eXogenous term (ARX), modeling
approach for the reheating furnaces, have been adopted.
However, studies on feedback loop data modeling are still
lacking.

In general, the concept of Process Control is always a
challenging problem, since the development of the industrial
plants lead to an increasing complexity of the utilized control
configurations. In the specific case of the WBF, distinct
approaches to design the temperature control scheme have
been introduced. Until now, the most common strategy was
to design diagonal PID controllers, as the work in [9] and
[10]. However, the performance of these controllers are
not always satisfactory, due to the existence of large time
varying delays and the high interaction between the control
loops [11]. Alternative popular control schemes, relies on the
framework of the Model Predictive based Control (MPC) as
in [12] and [13]. These approaches, in spite of a good MPC’s
performance in controlling the temperature and handling the
constraints, may not be practical in case of model mis-
matches and high plant disturbances, while for a satisfactory
operation, a high number of utilized tunning parameters is
needed. However, most of the previous studies do not take
into account the coupling effects and the interactions of
inputs-outputs for the process plant to design the proper
optimal control scheme.

The main novelty of this article, stems from the utilization
of structural decisions for the design of the WBF model,
while additionally a novel sparse control scheme for the
temperature control of the walking beam furnace is intro-
duced. First, a novel feedback based data-driven model, by
considering disturbances to the furnace, is presented based



on real life experimental data. The obtained model is con-
sidered as a multi-variable system with a non-square transfer
function. An additional novelty of this article is based on the
simplification of the previous derived plant model and the
corresponding study of the input-output interactions of the
system by the utilization of the Relative Gain Array (RGA)
theory and the Gramian based interaction measurement, Σ2.
Finally, the reduced obtained model is used to design the
controller configuration. The designed controller is tested
with real measurements of the furnace and the results were
compared with the decentralized PID controller.

The rest of this article is structured as it follows. The
modeling of the furnace is provided in Section II, while
the input-output selection for reducing the model’s order
is described in the Section III. In the sequel, the controller
design, based on the obtained configuration is established in
the same Section, while simulation studies that prove the
efficacy of the suggested scheme are depicted in Section
IV. Finally, the conclusions are drawn in Section V that
summarizes the main outcome of this article, while defining
the future work directions.

II. WBF PLANT DESCRIPTION AND MODELING

Figure 1 depicts the schematic diagram of the experimental
WBF at Swerea MEFOS AB, Luleå, Sweden. This WBF,
consists of three main temperature control zones. In the WBF
operation, initially the slabs enter the furnace through the
hatch loading door and proceed to the first zone where are
preheated. The second zone heats the slabs to the maximum
desired temperature. Then, the heated slabs are entered the
soaking zone (Zone 3), where the temperature of the furnace
slightly increases and the temperature inside the slabs is
normally distributed. Finally the slabs are discharged through
the unloading door.

Each control zone includes a pair of burners that fire the
light oil and are utilized as the corresponding actuators of the
process. The supply rate of the oil and the air flow for the
combustion process are fed to the burners at each control
zone. The temperature of each zone is measured by two
thermocouples, one at the wall of the furnace and the other
one at the ceiling. Additionally, the oxygen (O2) percentage
inside the furnace and the internal pressure P of the furnace
are measured. The hot combustion gases are conveyed by
two exhaust pipes located at zone 3. These exhaust pipes
recirculate the exhaust gases through the interior of the three
zones in order to reuse the heat and later are fed to a
heat exchanger in order to preheat the combustion air. This
recirculation of the combustion gases adds complexity to the
dynamics of the process for representing a physical feedback
loop.

A mathematical model for the temperature of the furnace
by using heat and mass balance equations was driven by [3],
while for clarity and consistency of this article it will be also
presented as it follows:
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where Ti i ∈ 1, 2, 3 is the temperature of each zone to be
controlled and Tref is the related reference temperature. FO,
FA and P are the oil feed flow, air feed flow and pressure
correspondingly inside of each heating zone respectively.
The amount of energy, which is transfered to the slabs
is represented by the variables Q and W that imply the
transfered energy to the wall of each zone of the furnace.
N denotes the number of moles of the furnace gas and c
represents the heat capacity at each zone of the furnace. The
other parameters (α, β, γ) are the parameters of the system
to be identified. The above equations present a simplified
analysis of the modeling of the furnace, without considering
the turbulence effect, heat transfer by radiation and the effect
of spatial domain to the temperature of each zone of the
furnace. However, it can be used as conceptual illustration
of the structure of the system and determined the effective
inputs and the outputs of the furnace. This investigation will
be later used in the data-driven modeling.

A. System identification

Subspace state-pace system identification method, is a
powerful methodology to predict the dynamic of the system
from measured data [14]. By assuming that the temperature
at each zone of the furnace can be approximated by a linear
function, the dynamics of the system can be described as:

xk+1 = Axk +Buk +Kek (4a)
yk = Cxk +Duk + ek (4b)

where k ≥ 0 is discrete time, xk ∈ Rn is the state vector,
uk ∈ Rr is the input vector, ek ∈ Rl is the zero mean



Fig. 1: The schematic block diagram of the Walking Beam Furnace under study.

white innovation process and yk ∈ Rm represents the output
vector, while A,B,C,D and K are constant matrices with
proper dimensions. This form of representing the system
for closed loop identification is a case of the so-called
direct method. The direct method is preferred when operating
data from the plant are available without knowledge of the
controllers. The direct method ignores the closed loop in the
formulation of the system, but requires that the noise models
(K) are sufficiently complex to represent the influence of the
controller [15].

Subspace system identification refers to the concept of
identifying those constant matrices directly from measured
input-output data. In this article, the Numerical algorithms
for the Subspace State Space System IDentification (N4SID)
with a Canonical Variable Algorithm (CVA) [16] are applied
to the WBF’s obtained experimental data. Initially, the vector
of stacked inputs, outputs and error are introduced in a future
horizon as:

yfk = [yTk , y
T
k+1, ..., y

T
k+f−1]T (5a)

ufk = [uTk , u
T
k+1, ..., u

T
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T
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T
k+f−1]T (5c)

where f ∈ Z+ is arbitrary chosen by the user and determines
the number of the steps ahead prediction. By the subspace
definition in (4a, 4b) the output variable can be redefined as:
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The first step in this method is to estimate the state vectors
by the vectors of measured inputs and outputs. Thus, the
states matrix can be assumed as a function of j-steps-back
inputs and outputs data as:

x̂k = Υpk (7)

where Υ is a matrix with unknown coefficient to be estimated
and

pk =

[
yTk−1 yTk−2 ... yTk−j
uTk−1 uTk−2 ... uTk−j .

]T
(8)

This estimation can be done by regressing yfk on pk and ufk
from equation (6) and obtaining Γ̂K and Φ̂.

The next step is to estimate Υ and as a result the states
vector x̂k. In order to do that, first the effect of the future
input on the future output should be removed by the linear
regression problem defined as:

zk , yfk − Φ̂ufk ≈ ΓΥpk + Ψefk (9)

Then Υ can be estimated by solving the singular value
decomposition on the correlation analysis on zk and pk as it
follows:

USV T = (R̂zz)−
1
2 (R̂zp)(R̂pp)−

1
2 (10)

where R̂zp = 1
N

N∑
i=1

zkp
T
k is the correlation between zk and

pk, with U and V to be the orthonormal matrices of left
and right singular vectors and S is the diagonal matrices
of singular values. Solving the above equation leads to
estimating the CVA estimate of Υ. Finally, after estimating
the states matrices by equation (7), the parameters of the
system, defined by the matrices A,B,C,D and K can be
estimated by the linear regression of state-space model in
(4a and 4b) (see [16], [17]).

Unlike classical prediction methods, such as the ARX
that optimize effectively for one-step-ahead prediction, the
presented algorithm can optimize a k-steps-ahead prediction
[18]. This property will reduce a bias in the prediction and
will conclude in a more accurate model of the system, which
will be later used by the control scheme.

B. Model validation and simulation results

In order to identify the dynamics of the system by
a data-driven methodology, a set of data from an on-
line campaign for several days of the WBF’s operation



at MEFOS were utilized. After data cu-ration, considering
equations (1, 2 and 3) and the available measurements
the variables of the inputs and outputs of the furnace are
selected. Since only the pressure of the whole furnace is
measured by a sensor, the effect of this input is neglected
in the identification process. Moreover, the exhaust flow
of gases is consider as an another input applied to the
furnace. Therefore, the inputs for the system identification
are u = [FO1, FA1, FO2, FA2, FO3, FA3, Fexhaust]

T and the
corresponding outputs are y = [T1, T2, T3]T .

For avoiding an over-fitting of the data prediction, two sets
of data are selected: the training and testing. The training sets
are chosen in a way that capture all the important operating
condition and consider a general case where both hatch
doors are open. For simplicity, it is assumed that there is
no feed through and this results for the matrix D = 0. The
initial estimated order of the system is determined by Akaike
Information Criterion (AIC). Figure 2 depicts the 20 steps
ahead prediction of temperature of each zone of the WBF on
the validation data set, with a sampling time of 10 seconds.
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Fig. 2: Validation of model over testing data set with a 20
steps ahead prediction. The dashed red line is the measure-
ment data, while the solid blue line represents the model.

From the obtained results, it is straight forward that the
resulted model has a very good performance in representing
the dynamics of the WBF, while at the same time has a
very accurate matching. Furthermore, Figure 3 presents the
change of Predicted Root Mean Square Error (PRMSE) of
each zone temperature for different k-steps-ahead prediction.

Obviously, by increasing the prediction horizon it results
in a bigger prediction error and a less accuracy of the model.
However, since the operating time for this furnace is in hours,
this model can sufficiently predict the dynamic of the WBF.

III. CONTROL CONFIGURATION SELECTION

The design of a control system for a multivariable process
usually involves the design of a control configuration prior
to the synthesis of controller parameters [20]. In Control
Configuration Selection (CCS) one approach is to simplify
the complete system model by selecting the most important
input-output interconnections of the system and reduced the
complexity of the model from the selected components [21].
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Fig. 3: Illustration of ability of the prediction by changing
the prediction horizon. The mean of PRMSE for output tem-
peratures is compared with changing the prediction horizon.

The derived simplified model can be later used to design
the controller. Moreover, CCS can be utilized to design
a sparse and less complex controller that considers the
interconnections between all the loops.

In most of the industrial applications such as the WBF, the
control configuration is designed by using previous knowl-
edge of the system, rules of thumb or even geographical
proximity between sensors and actuators [22]. Here, by
applying CCS methods such as classical Relative Gain Array
(RGA) and the Σ2 Gramian-based interaction measure on the
obtained model of the WBF, a systematic approach to design
a sparse control configuration is desired.

A. Quantifying controllability and observability with grami-
ans

The controllability (P ) and observability (Q) gramians for
the system in (4a) and (4b) can be calculated by solving the
following Lyapunov equations [23]:

AP + PAT +BBT = 0 (11)
ATQ+QA+ CTC = 0 (12)

It is well-understood that the gramians can be used to
quantify the system controllability and observability due to
their energy interpretations. The eigenvalues of P or Q are
often used for this quantification, since the states that are
difficult to reach are in the span of eigenvectors of P , which
correspond to small eigenvalues, and the states which are
difficult to observe are in the span of eigenvectors of Q which
correspond to small eigenvalues [24]. An issue is that the
gramians depend on the realization of the process (selection
of states).

In the sequel of this section, gramians will be used to
perform model reduction, input selection and control config-
uration selection.

B. Model order reduction

Since numerical errors have been observed in the cal-
culations of the gramians, a balanced truncation has been
performed in order to reduce the number of the states of the
model [25].

The states that are related to the number of Hankel Singu-
lar values 10−4 times smaller than the largest singular value
are removed, since an upper bound on the approximation



error can be calculated from the sum of the disregarded
Hankel Singular values [26].

C. Input Selection

The system presents 3 temperature measurements and 3
actuators grouped in 3 oil flows, 3 air flows and exhaust
flow. It is of convenience to perform input selection in order
to square down the plant for applying control techniques for
squared systems. The controllability gramian can be used
for the selection of p inputs by evaluating the controllability
of the reduced systems resulting from choosing any p-
combination of inputs chosen from the r total number of
inputs [27]. If the maximum eigenvalue of the controllability
gramian is considered, then the reduced B matrix (Bp),
resulting from the optimal selection of p actuators is obtained
from the following integer optimization:

Bp = arg. max
Bi=B(i,:),i∈(r

p)
λ̄(P (A,Bi, C))

where λ̄(P (A,Bi, C)) is the maximum eigenvalue (λ̄ ) of the
controllability matrix P (A,Bi, C) of the minimal realization
of the reduced system formed by picking the columns of B
indicated by the vector i. The vector i belongs to the set

(
r
p

)
of p-combinations of the first r integers.

D. Controller structure and controller design

After the selection of the reduced and simplified model,
CCS can be performed to the identified interaction between
the loops, while RGA which was introduced by Bristol in
[28] can be used for initial analysis of the system. By
definition, the RGA of a continuous process G(s) with equal
number of inputs and outputs is defined as:

Λ = G(0)⊗G(0)−T (13)

where G(0)−T is the transpose of the inverse of G(0) and
⊗ indicates element by element multiplication. Based on
the RGA pairing rules, it is preferred to select the pairing
with the related RGA value close to 1. Since, this can be
interpreted that there is no interaction effects in that pairing.
Besides, pairings with negative values of the RGA should
be avoided, since it means that the gain of the subsystem
changes it sign when all the other loops are closed.

However, the RGA is only applicable in the designed of
decentralized control configurations, where sensors and actu-
ators are grouped in pairs and the loops are closed using only
Single-Input-Single-Output controllers. This limitation leads
to improve the decision process for measurement/actuator
pairing with the gramian-based interaction measurements
such as Σ2 [29].

By assuming the state space representation in (4a) and
(4b). The Σ2 can be defined as:

Σ2 =

∥∥Gij

∥∥
2

Σm,r
h,l=1

∥∥Ghl

∥∥
2

(14)

where
∥∥Gij

∥∥
2

is the H2 norm of the system transfer func-
tion Gij . Since Σ2 is sensitive to input-output scaling, for

accuracy of the calculation it is required to scale the model
as [23]:

G(s) = D−1e Ĝ(s)Du

where De is the largest allowed control error and Du is the
largest allowed input change and Ĝ indicates the unscaled
transfer function.

The I/O pairing rules using this method is generally to
select the elements of Σ2m×m that have the value greater
than the average 1

m2 . However, this would be a preliminary
configuration, which has to be tested, leading to a possible
redesign in favor to a configuration with larger contribution
[30].

Additionally, Σ2 gives a measure of output controllability,
since the H2-norm can be calculated from the gramians as:

||G(s)||2 =
√
trace(CPCT ) =

√
trace(BTQB)

IV. SIMULATION RESULTS

The input selection for the WBF is performed by
evaluating all the possible subsystems with p = 3 actuators
and by choosing the subsystem that leads to the larger
value of controllability (λ̄(P )). After this analysis, the
subsystem formed by the 3 oil actuators: {FO1, FO2, FO3}
and the 3 temperature measurements has been found to
be the combination, which achieves the largest maximum
eigenvalue of the controllability gramian. The control action
on the air flows will be determined as a ratio from the
control action of the oil flows following the stoichiometric
relationship given by the combustion reaction.

The reduced subsystem model indicates that the most
influential inputs to control the WBF are the fuel feed flow
at each zone of the furnace and the effect of air feed flows
and the exhaust of gases can be neglected to design the
sparse controller. This statement can also be confirmed by
observing the data sets of the fuel feed flow and the air
feed flow. From Figure 4 it can be seen that from Pearson’s
linear correlation coefficients [15] there is a high correlation
between the Fuel feed flows and air feed flows (coefficient
of correlation ≥ 0.5).
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The RGA is utilized to design the decentralized control
configuration initially. The RGA for the subsystem model
can be derived as:

λ =

FO1 FO2 FO3 1.86 −1.77 0.91 T1

0.07 4.34 −3.41 T2

−0.93 −1.57 3.5 T3

Based on above calculation and the pairing rules mentioned
in section III, the most appropriate pairing for design of the
decentralized controller are: FO1−T1, FO2−T2, FO3−T3.

However, this controller involved the selection of values of
RGA larger than 1, which are related to an ill-conditioned
system. Also, RGA is unable to capture other loops per-
turbations. Thus, it can be deduced that the WBF under
study in this work, will be hard to control with decentralized
controller.

In order to analyze the interaction between all the loops,
Σ2 can be calculated from the scaled model as:

Σ2% =

FO1 FO2 FO3 9.69 3.92 15.72 T1

9.03 7.29 18.45 T2

7.36 5.93 22.62 T3

With the average contribution of 11.11% (1/9), the selected
elements to design multi-variable controller are: {FO1, FO3−
T1} , {FO2, FO3 − T2} and {FO3 − T3}. This investiga-

tion results controller matrix C =

c11 0 c13
0 c22 c23
0 0 c33

. The

elements c13 and c23 can be designed by feed forward
actions. Figure 5 presents the comparison between the step
response of the designed decentralized controller and the
multi-variable controller for the WBF in the feedback loop.
It can be seen that the decoupled multi-variable system can
sufficiently decreased the interaction between the other loops.
The structure of the feed back controller is illustrated in
Figure 6.

Fig. 6: The schematic of the designed multi-variable con-
troller for WBF in the feedback loop.

To validate the designed multi-variable controller,
a simulation on the experimental data of WBF was
performed. As shown in Figure 7, after the change in the
set points the controller is able to stabilized around the

set-points after 120[min].
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Fig. 7: Validation of the designed controller in the feedback
loop on the experimental set points. The dashed lines indicate
the reference temperature of each zones

V. CONCLUSIONS

The application of control structural design on the steel
industrial plant, walking beam furnace is demonstrated in this
article. Due to the high interaction between multiple inputs-
outputs of this multi-variable plant, temperature control of
this reheating furnace is a challenging task. A subspace
state space data-driven modeling was implemented that can
estimate the dynamic behavior of the WBF. This model has
multiple control actions and a non-square transfer function.
Control configuration methods, derived the most influential
inputs to the outputs of the system and a subsystem of
3 × 3 transfer function is derived. The reduced model is
initially analyzed by the RGA and the decentralized con-
troller is designed. However, based on the produced results,
the decentralized controller can not sufficiently control the
temperature of each zone of the furnace. A gramian based
interaction measurement Σ2 recommends a sparse controller
structure. The validation results of this suggested controller,
successfully control the temperature of each zone of the
furnace and track the references set points.
However, control design for this furnace is a trade off
against the achieved performance and the cost of obtaining
and maintaining the controllers, actuators and sensors. The
advantage of the designed sparse controller is its ability to
minimize this cost and the corresponding reduced complexity
of the proposed control scheme, while achieving a sufficient
performance. As a future work, this performance can be com-
pared with a centralized multi-variable controller. Moreover,
in extension of this work, the control structure design can
be applied for the combustion process of this walking beam
furnace.
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