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Abstract— The aim of this article is to present an example of
a novel cloud computing infrastructure for big data analytics
in the Process Control Industry. Latest innovations in the field
of Process Analyzer Techniques (PAT), big data and wireless
technologies have created a new environment in which almost
all stages of the industrial process can be recorded and utilized,
not only for safety, but also for real time optimization. Based
on analysis of historical sensor data, machine learning based
optimization models can be developed and deployed in real time
closed control loops. However, still the local implementation
of those systems requires a huge investment in hardware and
software, as a direct result of the big data nature of sensors
data being recorded continuously. The current technological
advancements in cloud computing for big data processing, open
new opportunities for the industry, while acting as an enabler
for a significant reduction in costs, making the technology
available to plants of all sizes. The main contribution of this
article stems from the presentation for a fist time ever of a
pilot cloud based architecture for the application of a data
driven modeling and optimal control configuration for the field
of Process Control. As it will be presented, these developments
have been carried in close relationship with the process industry
and pave a way for a generalized application of the cloud based
approaches, towards the future of Industry 4.0.

I. INTRODUCTION

For many years SCADA systems have been used to collect
sensor data in order to control industrial processes, usually in
real time [1]. The topological complexity of these systems
(see [2]) involves large costs associated to scaling and
adapting to the vast amount of signals gathered for allowing
a general reconfiguration on the control structure for the
process plant (see [3]). It should be also mentioned that the
majority of these SCADA systems, up to now, have been
utilized mainly for providing an overview of the controlled
process, while having the ability to perform Process Analyzer
Techniques (PAT) mainly for the statistical processing of the
received data for an off line analysis.

However, the recent innovations in online PAT and wire-
less embedded technologies have created a new era in which
almost all stages in the industrial process can be recorded,
stored and analyzed. This process is producing a massive
amount of sampled data that need to be stored and processed
in real time for allowing an overall reconfiguration of the
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control plant and for achieving a continuous operational
optimality against the variations of the production stages.

Towards this vision, the industrial processes require an IT
infrastructure that could efficiently manage massive amounts
of complex data structures collected form disparate data
sources, while providing the necessary computational power
and tools for analyzing these data in batch, near and hard
real-time approaches. The overall problem becomes more
complex, because of the diversity of acquired data mainly
due to the: different data and sensors types, data reliability
levels, measurement frequencies and missing data. Moreover
in every case, the acquired data needs to be filtered, stored
and often aggregated before any meaningful analysis can be
performed.

With the explosion of the “Internet of Things” [4] in the
last decade, a world of new technologies has become readily
accessible and relevant for the industrial process. Nowadays,
with relatively low costs, it is possible to send torrents of data
to the ’cloud” for storage and analysis. Cloud computing en-
compasses, cloud storage, and batch and streaming analysis
of data using the latest Machine Learning (ML) algorithms.
The potential benefits of using cloud computing for dynamic
optimal control in the industrial plants include:

e Dramatically reduced costs of storing and analyzing
large amounts of data

o Low levels of complexity relative to existing systems

o Enabling the use of advanced ML algorithms in batch
and real time

« Reduces the industry entry level costs, for implementing
advanced control systems

o Enabling large scale implementation with many low cost
Sensors

e Very easy to manage from the cloud

« Easy to scale or modify storage capacities

Inspired by these capabilities of the cloud infrastructure
and the reachability of these technologies nowadays, the
proposed architecture aims to combine the existing PAT
based analysis of process that is carried in most of the times
off line, or in a batch of time samples, with the multiple
streams of sensory data describing the process and product
states. The low-dimensional data should be robust against
infrequent updates of PAT measurements and missing data,
while handling largely varying measurement intervals. The
model should also be able to handle the multivariate and
auto correlated nature of process data and the high quantities
of data from regular on line measurements. Principles from
wireless sensor networks, estimation and statistical signal



processing will be integrated and evaluated with real process
data in order to create a novel and reliable PAT based swarm
sensing and data analysis that would drive the changes in the
Integrated Process Control (IPC) industry. Based on such an
architecture it will be for the first time feasible to acquire
and process online huge streams of data, improve the process
models and correspondingly perform an online reconfigura-
tion or re-tuning of the control scheme, in order to meet
the changing demands of the process under investigation and
apply platwide control techniques (see [5], [6]). Towards this
vision, the corresponding architecture of the cloud computing
for the big data analytics will be presented that forms the
major contribution of this article. Furthermore, the proposed
technological platform will be adjusted to the use case of a
walking beam furnace.

The rest of this article is structured as it follows. In the
Section II the architecture and components of cloud com-
puting will be introduced, while in Section III a use case of
a dynamic optimal design problem that can be implemented
using the described architecture will be analyzed. Finally,
Chapter IV will conclude the article by summarizing the
benefits and limitations in using the described architecture
in the industrial process.

II. ARCHITECTURE FOR CLOUD COMPUTING

In batch computing, data is first stored in a Big Data
Repository where it can be properly cleaned, aggregated or
transformed before being analyzed by the process managers
(see [7]). Often this includes saving the data in Parquet
format that can reduce the size of the data up to 90% of
its original size.

In the proposed prototype architecture for batch processing
over the Cloud, users (industrial processes) were given access
to an Amazon web portal for S3 storage services. All users
were encouraged to contribute their raw batch data to the S3
repository. From the S3 storage service it is feasible to collect
the data onto virtual computers (’instances”) implemented
over the EC2 Amazon elastic computing framework, for
data analysis and cleaning. On these virtual computers the
Hadoop cluster [8] has been installed with a Spark engine
[9] for computing and an RStudio Server [10] as an analytic
access point for the end-users. Further access is also provided
to the virtual computers via the RStudio Server IDE, through
which they can perform ML algorithms and a vast array of
statistical analysis on the data. The overall architecture of
the proposed cloud architecture is presented in Figure 1.

In the architecture depicted in Figure 1, historical data
collected from sensors embedded in the industrial process,
are uploaded to the S3 storage on the Amazon Web Service
(AWS). After the upload the data are cleaned and prepared
for analysis on the big data framework. The process man-
agers can access this data via local computers where they can
send, develop and test their algorithms, including dynamic
optimal control algorithms on the cloud of the monitored
process.

Historical Data Repository - Users were given access to
an Amazon S3 storage facility to which they were able to
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Fig. 1. Schematic Diagram of the Cloud Based Architecture

upload their historical/batch data in various formats (csv,
Json, etc.). Amazon Simple Storage Service (S3) is a web
storage interface that can facilitate storage of virtually un-
limited data bucketed into 5 terabytes in size. Furthermore,
the analytic architecture on the cloud is comprised of a
”big data” infrastructure, where the files are distributed over
several machines for storage and parallel computing and a
statistical software from which the data can be transformed
and analyzed.

A. Cloud Storage

Amazon Web Services (AWS) offers a suite of over 70
services that form an on-demand computing platform. The
two core services offered are:

1) Amazon Elastic Compute Cloud (EC2) - a virtual
computer rental service through which users can run
any software they desire and tailor the computer spec-
ifications to their specific needs. The payment scheme
is per hour of actual usage - where computers can be
”stopped” and ’started” on demand.

2) Amazon Simple Storage Service (S3) - a web storage
interface which can facilitate storage of virtually un-
limited data bucketed into 5 terabytes in size.

In the presented architecture, the utilized Amazon on-
demand platform allowed for higher flexibility in pricing and
almost instantaneous setup of our prototype architecture. It
also served as a platform where the different partners could
easily upload and access their data for further analysis.

B. Hadoop Cluster (HDFS)

Apache Hadoop is the leading open-source software
framework for distributed storage and processing of Big Data
[8]. While Hadoop encompasses a suite of Apache software
programs that help manage the tasks on the distributed
system, the two core components of Hadoop are:

1) Hadoop Distributed File System (HDFS) - The system
that takes very large data, breaks it down into separate
pieces and distributes them to different nodes (servers)
in a cluster.

2) MapReduce - The computational engine that can per-
form analysis on the cluster.



HDFS was designed to store Big Data with a very high
reliability and flexibility to scale up by simply adding com-
modity servers.

In the presented prototype architecture it has been utilized
Hadoop as a framework for setting up the HDFS cluster on
which the sensor data are stored.

C. Apache Spark Engine

The main feature of Apache Spark is its in-memory cluster
computing that increases of the processing speed much faster
than the Hadoop’s MapReduce technology. Spark uses HDFS
for storage purpose, where calculations are performed in
memory on each of the nodes. Aside from the increased
speed in computation, the Spark engine is able to:

o Provide built-in APIs for multiple languages: Java,
Scala, Python and R

o Spark-SQL for querying big data with SQL liked code

o Spark-MLIib [11] for big data parallel machine learning
algorithms like linear and logistic regression, clustering
K-means, decision trees, random forest, neural network,
recommendation engine and more

o Spark-Streaming for calculating machine learning algo-
rithms on streaming data

D. Process Managers

At the other end of the proposed architecture are the
process managers who, through local computers, can access
and perform machine learning algorithms on the data stored
in the Hadoop cluster. The two leading programs that serve
as an interface for conducting statistical analysis using the
Spark engine are:

1) R - An open-source statistical language used widely
both in the industry in academia.

2) Python - An open-source all around language which
has a vast library of functions for implementing ma-
chine learning algorithms.

As mentioned above, both of these coding languages have
APIs that pass commands to the Spark engine. The process
managers access and run these programs through a number
of web-based development environments and notebooks such
as the Jupyter notebook, which is popular in the Python
community and RStudio, which is the leading IDE amongst
R users.

E. Control Feedback Loop

After the process managers have performed their analysis,
they can set up dynamic models for implementation in
the cloud that can push back responses to the industrial
processes. This process is explained further in the Near Real-
Time Computing subsection.

F. Historical Big Data Repository

In the cloud, the raw data and the process manager’s
recommendations will be stored at the historical big data
repository (AWS S3). AWS offers great flexibility in storage
plans that have the merit to be easily scaled as needed.

G. Near Real-time Computing

Apache Kafka [12] is a publish-subscribe messaging
application that enables sending and receiving streaming
information between the plants and the Spark engine on the
cloud. On the local computers (in the plants) a Kafka API
(which consists of a few Java libraries) sends streaming data
to a Kafka Server set up on AWS that manages the queue of
information passed on to the Spark engine. The Spark engine
then performs the streaming analysis and pushes back the
results to the Kafka server and from there back to the plants.
The analysis can be either cleaning of the data, searching
for outliers or implementing a ML algorithm in real-time.
In addition, every 10 minutes the Spark server sends the
accumulated data to the Historical Big Data Repository for
future use or for batch computing.

H. Batch Computing

In batch computing, the data are initially stored in the
Historical Big Data Repository where it can be properly
cleaned, aggregated or transformed before being analyzed
by the process managers. In many cases, this step includes
saving the data in the Parquet format which can reduce the
size of the data by using the R or Python languages. In
general, the process managers can choose from a vast array
of ML algorithms that can be implemented on the cluster
through the Spark engine.

III. THE USE CASE OF THE WALKING BEAM FURNACE

The walking beam furnace is used to re-heat slabs (large
steel beams) to a specific temperature before their refinement
in the steel industry (see [13]). The slabs are walked from
the feed to the output of the furnace by the cyclic movement
of so-called walking beams. During this passage, the items
are directly exposed to the heat produced by burners located
inside the furnace. Since the heat distribution affects the qual-
ity of the finished product, a natural optimal control problem
in this context is to regulate pre-assigned temperatures at
specific points of the furnace, while minimizing the energy
expenditure for the heat generation (see [14], [15]).

The walking beam furnace at MEFOS is an experimental
furnace and lacks some of the features of an industrial
furnace. Specifically, the temperatures throughout the furnace
are not feedback controlled (as it is otherwise customary in
the industry), i.e., the furnace operates open loop. Currently,
a human operator configures the furnace set-points manually
(the set-point values are, however, computed numerically)
and then measures the slabs temperature at the furnace
exit using a pyrometer. In fact, under normal operating
conditions, the open-loop control can be tuned to work well.
Additionally, this industrial installation is affected by stops
and other variations that influence the control performance
and correspondingly the need for a feedback control loop.
In the described use case the main variables that need to be
controlled are thus: a) the furnace temperatures in several
zones of the furnace and b) the temperature of slabs at the
output (the target temperature). Furthermore, the main ob-
jective is to reduce the operating costs through the reduction



of energy consumption. In this respect, a small decrease in
energy consumption such as 0.5% translates into a saving
of 2kWh per ton of heated product, while optimal control
strategies could lead to quality improvements as well. The
overall schematic diagram of the WBF with the indicative
control loops, the sensors and the different heating zones is
depicted in Figure 2.
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Fig. 2. Schematic Diagram of the Walking Beam Furnace

To achieve these goals there is a need to gather more
information about the process on-line, while the optimal
controls output would optimize the process by controlling
the following variables: 1) the fuel supply rate at the burners,
one burner at each zone, total of three burners, 2) the fuel
atomization air supply rate, one for each burner, 3) the
combustion air flow, one at each zone, total of three zones,
and 4) the exhaust flow, e.g. exhaust damper position, one
exhaust damper in the furnace.

In this use case, MEFOS has installed a dedicating PC in
the WBF site for managing the flow of the measurements
data. Figure 3 presents the flow of the sensory data from
ABB control system to the connectivity server and from there
to the corresponding PC and in the sequel to the cloud.
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Fig. 3. Cloud Based Implemented Architecture of the WBF

In the presented use case it is intended to stream the data
on-line, near real-time from the process by using the Kafka-
producer component, to Kafka service in the cloud, while the
Apache Kafka publishes-subscribes messaging applications.
In the cloud the data will be pulled by the Kafka-consumer
that will be implemented at the Spark cluster. At the cluster,
the data will be verified, cleaned, aggregated, organized and
sent to the optimal control system to determine recommen-
dations. Afterwards the optimizer’s recommendations will
be pushed back to Kafka, while the corresponding gateway
will determine the fuel supply rate at the burners, the fuel

atomization air supply rate, the combustion air flow and the
exhaust flow. In the cloud the raw data and the optimizers
recommendations will be stored at historical big data repos-
itory (AWS S3). The overall schematic representation of the
presented architecture is depicted in Figure 4.

For this usecase, the variables required from the optimal
control module are the following ones in Figure 5:

The minimum data input for the optimal control is 200
past values of the averages every 10 seconds of the above
parameters (one value every 10 seconds in the last 2,000
seconds, i.e. 33 minute and 20 seconds) is required.

A. Transferring data from the sensors to the cloud

For transferring data from the sensors to the cloud, a
computer connected to the WBF process is utilized that is
able to manage and update the site metadata, i.e. a Mefos-
Service method which run preliminary for synchronization
of factory list, zone list, sensor list, bath list and model
list. Furthermore, this method create a file in json structure
with 3 fields: FactoryID, ZonelD, SensorID in Every possible
values, while the posted data can be either a single message
or array. The input messages are processed at the Kafka

TABLE I
MESSAGE TYPES

Message Type 1 - Process Status Change

Factory ID F Key [Predifined Integer]
Batch ID F key [Predefined Integer]
Status ID P key [running Integer]
Date time [Time Stamp]

Current Status [Predefined String:Idle/Start/Stop/Pause/Restart ]
Message Type 2 - Measurements

Factory ID F key [Predefined Integer: -1 /1/2/3/]

Zone ID F key [Predefined Integer]

Sensor ID F key [Predefined Integer]

Batch ID F key [Predefined Integer]

Date Time [Time Stamp]

Measurement value  [Double]

Measurement unit [Char: C/ % / m3/h / kg/h / MMWC / Boolean ]
Quality [Integer]

server by using a specific topic that it is known by both
sides as the MefosService and the MefosSpark, while it
requires suitable configurations e.g “ToSpark”. The Kafka
API provides a callback method which verifies the input
streaming received on Kafka server. The POST method »/
SendMeashurements” uses this API to evaluates any loss, if
there is some.

B. The Cloud side

On the clouds side (AWS) there will be the Kafka server
which will receive a streaming of data and will manage
the queue. Overall the data will be routed through the
Kafka server into the Spark cluster and from there back
to Kafka. As mentioned before, the Kafka server will be
held responsible for managing the messages that arrive
from MefosService. The Spark streaming process consumes
measurements data from the Kafka server, store it in the
memory, and feeds the relevant process models at 10 sec.
In every batch intervals the process receives the recommen-
dations per measurement type from each model and sends
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Name Tag name Unit
Fuel WBF_Z01_0ilControl_FIC:HSI.MV KG/H _ FromKafka
Fuel WBF_Z02_0ilControl_FIC:HSI.MV KG/H Every 1000ms
Fuel WBF_Z03_0ilControl_FIC:HSI.MV KG/H
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Air-flow WBF_Z02_AtomAir_FIC:HSI.MV MA3/H *"%,f’;exu,% Historical Big Data
Air-flow WBF_Z02_AtomAir_FIC:HSI.MV MA3/H Valld measurements only oyl Repository
Zone temperature WBF_Z01_ZoneTemp:HSI.MV °C o 4
Zone temperature WBF_Z02_ZoneTemp:HSI.MV °C Aggregate & update in-
Zone temperature WBF_Z03_ZoneTemp:HSI.MV °C S3
Pressure WBF__PC027:HSI.MV MMWC 10 sec. window
Air-flow WBF_Z01_CombAir_FIC:HSI.MV MA3/H —
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entrance door
status of the .
entrance door SU_IML_GB6_SGN:HSI.Value Boolean ' ' )
status of the exit door SU_UML_GB29_SGU:HSI.Value Boolean Fig. 6. Overview of the Streaming Process
status of the exit door SU_UML_GB30_SGN:HSl.Value Boolean
recirculation of cold air WBE._.ColdCAir_QuiputHSLEMY. MA3/H

Fig. 5. Variables required by the optimal control module

the recommendations to the Kafka server. In the sequel, the
Spark streaming process saves the measurements data along
with the recommendations to AWS S3. Overall, the streaming
process is depicted in Figure 6.

The Kafka server will also keep and be responsible for
the recommendations data queue that it is arrived from the
Spark cluster. For the transfering of the results from the
cloud back to the process, the Kafka server keeps the controls
recommendations data and streams them on a specific output
topic to some consumer, while the "MefosService” includes
the Kafka-consumer feature that pulls the recommendations
data from the output topic, e.g. “"FromSpark™. Finally, the
output recommendations are reaching to the Web-API of the

process by a provided URL.

For the big data repository, the Spark-Streaming process
metadata are synchronized and pre-processed. After this step
the data are being pushed from the Mefos-Service PC into the
Kafka server and from there are pulled by the Spark cluster.
At the Spark-Streaming, the initial data are accumulated
in the memory and afterwards are saved at a historical
Big Data repository. The Controls recommendations data
are also accumulated at the memory and are saved at the
historical Big Data repository that relies at the AWS S3
(Amazon Simple Storage Service), while the files will be
saved as Parquet file type with the following benefits: 1)
The structure of the table, i.e. the number of the columns,
their types and the delimiter between columns, will be saved,
2) the data are compressed, a fact that saves about 60%
of its volume compared to text file type, and 3) it enables



the straight upload into Spark in memory data storage, no
conversions will be needed. Furthermore, the historical Big
Data repository will enable deep investigation of the data in
case it is required for the development of new models, such
as the BI reports, etc.

IV. CONCLUSIONS

In this article an example of a novel cloud computing
infrastructure for big data analytics in the Process Control
Industry has been presented. The current technological ad-
vancements in cloud computing for big data processing, open
new opportunities for the industry, while acting as an enabler
for a significant reduction in costs, making the technology
available to plants of all sizes. The main contribution of
this article has been the presentation for the fist time ever
of a pilot cloud based architecture for the application of a
data driven modeling and optimal control configuration for
the field of Process Control. These developments have been
carried in close relationship with the process industry, since it
has been presented a use case at the walking beam furnace of
the Steel Industry MEFOS in Sweden. Part of the future work
includes the full extended experimentation and validation of
the proposed scheme in WBF campaigns.
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