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Abstract: Creation, maintenance, and update of digital twins are costly and time-consuming mechanisms. 
The required effort can be optimized with the use of LiDAR technologies, which support the process of 
collecting data related to spatial information such as location, geometry, and position. Sharing such data in 
multi-stakeholder environments is hindered due to competition, confidentiality, and security requirements. 
Multi-stakeholder environments favor the use of decentralized creation and update mechanisms with 
reduced data exchange. Such mechanisms are facilitated by Federated Learning, where the learning process 
is performed at the data owner's location. Two case studies are presented in this paper, where LiDAR is 
used to extract information from industrial equipment as a part of the creation of a digital twin.  
Keywords: Digital twin, federated learning, LiDAR, point cloud, railway catenary. 

1. INTRODUCTION 

The operation of industrial systems depends on effective and 
efficient maintenance actions to provide the required 
performance. Maintenance actions are triggered when there is 
a deviation between the required performance and the 
provided performance, either in the current operation or in the 
planned operation. A maintenance policy is a general approach 
to the provision of maintenance and maintenance support 
based on the objectives and policies of owners, users, and 
customers (IEC, 2004). It describes the interrelationship 
between the maintenance echelons, the indenture levels, and 
the levels of maintenance to be applied for the maintenance of 
an item (IEV, 2021). 

Condition based maintenance (CBM) depends on i) 
measurable parameters that correlate with the degradation over 
time and onset of failure, ii) changes in the measurable 
parameters obtained from data collection, while iii) data 
collection is performed while keeping the object operational 
(Ben‐Daya et al., 2016). Knowledge of the history and current 
condition of the system is crucial; however, prognostics 
depends on overall understanding and methods of describing 
the system and its environment. To best describe a system its 
physical attributes, environmental conditions, changes over a 
period of time like operations and maintenance actions are 
required. The twin concept started at the National Aeronautics 
and Space Administration (NASA) as a physical ground-based 
twin similar in every aspect of the flying vehicle. The concept 
of digital twin (DT) was introduced by NASA as an ultra-
realistic simulation with a physical model, sensor data, data 
exchange. and the capability to recommend changes to mission 
profile to increase both the life span and probability of mission 
success (Shafto et al., 2012).  

The following definition is used for the current work, a DT as 
an integrated multi-physics, multi-scale simulation of a 
complex product which uses available models and information 

updates (such as sensor measurements, procurement and 
maintenance actions, configuration change) to mirror an asset 
during its entire lifecycle. Technologies such as Industrial AI 
(Lee et al., 2019), visualization, and maintenance analytics 
may be integrated with the DT for augmented decision 
making. The main components of DTs are: i) a physical asset 
belonging to the physical space, ii) a virtual asset belonging to 
the virtual space, iii) and connected data which ties in the 
physical and virtual assets and belongs to the information 
space (Karim et al., 2021). 

Creation, maintenance, and update of a DT is a costly, time-
consuming, and complex affair. Collection of design 
information, replication of design of physical systems into 
models, updating configuration changes, non-conformity of 
as-designed to as-built are some of the issues that plague the 
DT design. Hence, the cost and complexity of the creation and 
maintenance of the digital twin of physical systems is a 
major deterrent in its adoption (Ariyachandra and Brilakis, 
2019).  

In the construction domain, Building Information Modeling 
(BIM) provides a digital representation of physical and 
functional aspects of physical spaces. The process of 
generating BIM from the point cloud is called “scan to BIM”. 
It is generally created during the initial phases, however, over 
the lifecycle of the system with operations and maintenance 
process the BIM may not be the true representation of the 
physical space. The BIM can be used for the creation of the 
DT and eventually the DT can be used to update the BIM. Scan 
to BIM process today depends on manual intervention, is time-
consuming, and does not generate very accurate results (Xiong 
et al., 2013). Hence, automation of the update process is the 
critical threshold for simplifying the integration of digital 
twins in several situations. 

The complexity of DT design of physical assets increases due 
to inherent requirements like system modeling, sensor data, 
different and changing environmental factors, a fleet of 
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1. INTRODUCTION 

The operation of industrial systems depends on effective and 
efficient maintenance actions to provide the required 
performance. Maintenance actions are triggered when there is 
a deviation between the required performance and the 
provided performance, either in the current operation or in the 
planned operation. A maintenance policy is a general approach 
to the provision of maintenance and maintenance support 
based on the objectives and policies of owners, users, and 
customers (IEC, 2004). It describes the interrelationship 
between the maintenance echelons, the indenture levels, and 
the levels of maintenance to be applied for the maintenance of 
an item (IEV, 2021). 
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time and onset of failure, ii) changes in the measurable 
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and Space Administration (NASA) as a physical ground-based 
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of digital twin (DT) was introduced by NASA as an ultra-
realistic simulation with a physical model, sensor data, data 
exchange. and the capability to recommend changes to mission 
profile to increase both the life span and probability of mission 
success (Shafto et al., 2012).  

The following definition is used for the current work, a DT as 
an integrated multi-physics, multi-scale simulation of a 
complex product which uses available models and information 

updates (such as sensor measurements, procurement and 
maintenance actions, configuration change) to mirror an asset 
during its entire lifecycle. Technologies such as Industrial AI 
(Lee et al., 2019), visualization, and maintenance analytics 
may be integrated with the DT for augmented decision 
making. The main components of DTs are: i) a physical asset 
belonging to the physical space, ii) a virtual asset belonging to 
the virtual space, iii) and connected data which ties in the 
physical and virtual assets and belongs to the information 
space (Karim et al., 2021). 

Creation, maintenance, and update of a DT is a costly, time-
consuming, and complex affair. Collection of design 
information, replication of design of physical systems into 
models, updating configuration changes, non-conformity of 
as-designed to as-built are some of the issues that plague the 
DT design. Hence, the cost and complexity of the creation and 
maintenance of the digital twin of physical systems is a 
major deterrent in its adoption (Ariyachandra and Brilakis, 
2019).  
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(BIM) provides a digital representation of physical and 
functional aspects of physical spaces. The process of 
generating BIM from the point cloud is called “scan to BIM”. 
It is generally created during the initial phases, however, over 
the lifecycle of the system with operations and maintenance 
process the BIM may not be the true representation of the 
physical space. The BIM can be used for the creation of the 
DT and eventually the DT can be used to update the BIM. Scan 
to BIM process today depends on manual intervention, is time-
consuming, and does not generate very accurate results (Xiong 
et al., 2013). Hence, automation of the update process is the 
critical threshold for simplifying the integration of digital 
twins in several situations. 

The complexity of DT design of physical assets increases due 
to inherent requirements like system modeling, sensor data, 
different and changing environmental factors, a fleet of 

systems. Distributed digital twins in terms of functionality, 
data aggregation, information generation, and decision support 
can simplify the overall design of the DT in multi-stakeholder 
environments. These stakeholders although working in the 
same domain in association with each other may not be able to 
share the data due to confidentiality and data security 
requirements. In the railway scenario, these stakeholders can 
be the infrastructure manager, vehicle owner, operator, 
maintenance service provider. Federated Learning (FL) 
(Shokri and Shmatikov, 2015) allows model training at the 
data owner's location and aggregation of models at a central 
location. This can be preferable in many scenarios involving 
multiple competing stakeholders like railways and energy.  

The creation of geometric DTs from physical features through 
LiDAR scanning has been explored in various domains. 
LiDAR (light detection and ranging) (Taylor, 2019) utilizes a 
LASER beam to measure the distance of objects in its 
surroundings. This provides output in the form of a point 
cloud, with spatial information of scanned points in 3D space. 
The availability of LiDAR technology for positional data 
acquisition, cloud computing for data storage and processing, 
and finally visualization, and machine learning tools for 
information generation support the creation of pipelines for 
data processing and automating the process of digital twin 
initialization and update. 

The purpose of this paper is to study the requirements for the 
creation of DT through FL using LiDAR point cloud in multi-
stakeholder environments. Two industrial systems namely 
railway overhead catenary and industrial rolling sieve have 
been used as candidates for the exploration. The main 
contributions of this paper are to highlight areas of interest for 
FL in DT and LiDAR data processing flow for input to the DT 
process.  

The flow of the paper is as follows, section 2 provides an 
overview of related work in the domain of DTs, LiDAR, and 
FL. Section 3 discusses aspects impacting federated learning 
for the DT process, section 4 presents two use cases, and 
finally, section 5 presents the conclusions and sets the 
direction for future research. 

2. RELATED WORK 

The growth of simulation technology has been from the initial 
individual application to standard tools for a specific design, 
to simulation of multi-disciplinary systems to finally as a 
digital twin is the core functionality of the system (Rosen et 
al., 2015). DT provides a way to integrate four dimensions of 
modeling i.e. geometry, physics, behavior, and rule modeling 
(Tao et al., 2019). Further, machine vision as an input method 
is suitable since the cost structure for data acquisition is fixed 
irrespective of the amount of tracking performed (Uhlemann 
et al., 2017). DT of physical assets requires high-resolution 
data collection for precise representation and repetitive data 
collection to represent effects of factors like environment and 
maintenance. Further, information about the physical asset, 
events, and digital interface has to be structured to allow DT 
functionality to external applications (Steinmetz et al., 2018). 

LiDAR scanning has been utilized in various domains to create 
a 3D environment and accurate measurement of physical 
structures. The most important features of the LiDAR system 
are accuracy, precision, resolution, data collection rate, and 
lack of human intervention during data collection through 
aerial or mobile (ground-based) scans. LiDAR scans are being 
used for the physical reconstruction of large areas in domains 
like archeology spanning over an area of 200 sq km to reveal 
previously undiscovered structural groups, agricultural fields, 
and causeways (Chase et al., 2011). Understanding pre-failure 
deformations and recognition of different phases of 
deformation evolution through LiDAR scans to detect rock 
activity in mines (Royán et al., 2014). Geometric digital 
twinning of cable systems through the use of LiDAR has been 
explored in different domains such as railways and power 
transmission (Ariyachandra and Brilakis, 2020; Cheng et al., 
2014). 

FL takes another step towards bringing data to a central 
location, it comprises of a loose federation of participating 
devices and coordinated by servers, the clients generate and 
train on a local data set and only update the global model on 
the server following the principle of data minimization (H. 
Brendan McMahan, Eider Moore, Daniel Ramage, Seth 
Hampson, 2017). Further, distributed ledgers like Blockchain 
have been utilized for secure storage and verification of the 
clients and use of FL for accelerating the consensus process 
(Lu et al., 2021). The clear advantages of this structure are the 
independence of model training from raw data requirements 
while providing a collective benefit to the participants while 
maintaining data privacy. 

3. SYSTEM MODEL 

DT can play an important role in the overall lifetime of the 
equipment. Starting from the design, production, execution, 
and optimization the stages can be seen as a part of a large 
loop. All these interconnected and interdependent stages can 
benefit from the insights to be used as a knowledge base and 
testing ground for knowledge development.  

DTs are seen as a step forward from the simulation-based 
development cycle. Since DTs allow for the amalgamation of 
knowledge from not only the working of the system but also 
external factors like environment, changes over a period of 
time, configuration updates. Figure 1 represents the process of 
creation of DT from LiDAR point cloud through the use of FL. 

The development of DT’s is complex and complicated due to 
dependency on a large number of factors through the lifetime 
of the system, integrations of high-fidelity models, and 
requirements of accommodating data from various kinds of 
sensors. The data collection and sensors may not only be 
digital but also depend on human designers, operators, and 
maintenance crew. In the case of fleet systems dissimilar 
environmental effects, configuration updates, and usage 
patterns. create difficulties in the utilization of the knowledge 
developed in individual instances. 

FL can provide various advantages to improve the overall 
design of DT. Since FL creates model requests instead of data 
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requests it differs from the client-server model and changes the 
computation model and security requirements. 

3.1 Computation effort  

Since the computation effort is divided among the servers and 
devices, computation effort at the device end can be written as: 

𝐸𝐸𝑑𝑑𝑑𝑑 =  𝑃𝑃𝑐𝑐𝑐𝑐𝐷𝐷𝑖𝑖
𝑃𝑃𝐴𝐴𝐴𝐴

(1) 

 
Where, 𝑃𝑃𝑐𝑐𝑐𝑐  is the processing power (as CPU cycles) required 
per data sample at the device 𝑑𝑑𝑖𝑖, 𝐷𝐷𝑖𝑖  is the locally generated and 
processed dataset. 𝑃𝑃𝐴𝐴𝐴𝐴 is the actual processing power (as CPU 
frequency) of the device 𝑑𝑑𝑖𝑖. Finally, 𝐸𝐸𝑑𝑑𝑑𝑑  is the effort required 
in terms of computation time at the device. 

𝐴𝐴𝑠𝑠𝑠𝑠 =  
𝑃𝑃𝑠𝑠𝑠𝑠
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Where, 𝑃𝑃𝑠𝑠𝑗𝑗  is the processing power (as CPU cycles) required 
per data sample at the server 𝑠𝑠𝑗𝑗, 𝑟𝑟𝑖𝑖 is the result submitted by 
the device 𝑑𝑑𝑖𝑖 with the total number of devices as 𝑁𝑁 and 𝑃𝑃𝐴𝐴𝐴𝐴 is 
the actual processing power (as CPU frequency) of the server 

𝑠𝑠𝑗𝑗. Finally, 𝐴𝐴𝑠𝑠𝑠𝑠 is the model aggregation effort required in 
terms of computation time for the server.   

𝑇𝑇𝑑𝑑𝑑𝑑 =  𝑠𝑠𝑟𝑟𝑟𝑟
𝑏𝑏𝑑𝑑𝑑𝑑

 (3) 

Where, 𝑠𝑠𝑟𝑟𝑟𝑟 is the size of the result generated (bits) at the device 
𝑑𝑑𝑖𝑖, and 𝑏𝑏𝑑𝑑𝑑𝑑 is the maximum theoretical bandwidth (bits per 
second) of the slowest link between the device and the server. 
Finally, 𝑇𝑇𝑑𝑑𝑑𝑑  is the time required for data transfer to occur 
(seconds). 

𝑇𝑇𝑠𝑠𝑠𝑠 =  
∑ 𝑠𝑠𝑟𝑟𝑟𝑟

𝑁𝑁
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𝑡𝑡𝑠𝑠𝑠𝑠

 (4) 

Where numerator represents data received by the server from 
all the devices, 𝑡𝑡𝑠𝑠𝑠𝑠 is the actual throughput at the time of 
transfer (bits per second), and 𝑇𝑇𝑠𝑠𝑠𝑠  is the time required for the 
transfer to occur (seconds). 

In a client-server architecture, servers are required to be 
powerful devices, however, computation effort at the server  
𝐸𝐸𝑠𝑠𝑠𝑠 ≫ 𝐸𝐸𝑑𝑑𝑑𝑑  and 𝑇𝑇𝑠𝑠𝑠𝑠  ≫ 𝑇𝑇𝑑𝑑𝑑𝑑 since all the data generated at the 
clients will be transmitted to the server and the server will be 
responsible for computation. As the number of devices grows 
servers can be overwhelmed and devices may face DOS 
(denial of service), and more servers will be required to 
mitigate the problem.  

In the case of FL, 𝐴𝐴𝑠𝑠𝑠𝑠 and 𝑇𝑇𝑠𝑠𝑠𝑠  are reduced since only updated 
training weights instead of the dataset, configurations, 
environmental reading are transmitted. Further, 𝐴𝐴𝑠𝑠𝑠𝑠 and 𝑇𝑇𝑠𝑠𝑠𝑠  are 
reduced since the servers collect training weights only from 
selected devices in each model update round. This improves 
the overall scalability of the system. However, in some cases 
of FL, the size of the weights generated may be larger than the 
data to be transmitted, in the case studies presented in the paper 
data size exceeds by a large factor. 

3.2 Privacy 

Privacy of transmitted data is a core requirement for personal 
and commercial data-sharing applications. Privacy and 
confidentiality are paramount for data sharing in a multi-
stakeholder environment. FL is suitable for such conditions 
due to the non-requirement of data sharing. Further, FL 
provides excellent privacy as the weights to data ratio 
decreases, mitigating the possibility of data extraction from 
shared information. In our use cases a ratio of approximately 
5 × 10−6 (8KB/ 1.6GB) was observed. 

3.3 Cybersecurity 

Cybersecurity in networks with FL is required due to internal 
and external threats of model contaminants. Providing 
authentication for the devices, provenance of shared 
information, while maintaining security and ownership for the 
data is a critical factor in multi-stakeholder environments. 
Private distributed ledgers working with a Proof-of-stake 
mechanism can efficiently support these requirements.  

 
Figure 1 System model 
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3.4 Model quality 

In machine learning systems data from under-represented 
entities with environmental heterogeneity may appear as 
outliers and may be discarded. This can introduce a bias in the 
model. FL takes place in rounds where the server can select 
the devices which will share weights for the next round of 
learning. Overall learning of the system can be improved by 
the selection of devices required for contribution to providing 
better opportunities for devices with inadequate 
representation. 

3.5 Model state management and serialization 

DT design through FL learning will depend on state 
management of the model due to interrelated and 
interdependent parts required to create model sharing pipeline. 
Such state management is required to keep devices in the 
correct state even in case of intermittent network connectivity. 
Further, serialization is important for the storage, distribution, 
and versioning of the model. 

3.6 Delegated DT 

To manage the complexity in DT a delegation-based 
architecture, where different aspects of the DT are 
compartmentalized and separated is suitable. However, a 
mechanism to extract and merge information from such 
delegated models and suitable representation of this 
information for consumption and distribution at that time or in 
the future becomes necessary. Hence an overall architecture 
with delegated DT, FL for model development, serialization, 
ownership, and versioning of models will be required. 

3.7 Threats 

System complexity: Best possible design of DT is through 
hybrid models i.e., a mix of physics-based, and data-driven 
systems. The design of DT depends on the availability and 
understanding of the physics of the system, and the selection 
of suitable data processing and model design. 

Processing complexity: Edge computers have less storage and 
processing capabilities as compared to servers, if the 
algorithmic complexity or memory requirements are high or 
selected processing algorithms require GPU support, the edge 
system will not be able to cope with the requirement. However, 
improvements in hardware technology increase the processing 
power and available memory while decreasing the cost of 
equipment. 

Insider threats: FL servers utilize the weights being provided 
by the devices and share the result with all the devices. 
Misconfigured or malicious devices can submit erroneous 
weights to corrupt the shared model, this presents an insider 
threat.  

External threats: Authentication and authorization of devices 
participating in the learning process is a requirement. 
Improvement in the model is dependent upon the fair 
representation of systems with outlier data. However, if 
devices not a part of the network can masquerade and submit 
fake models this can hamper the universal model.  

4. CASE STUDY 

In this paper two industrial systems, namely railway overhead 
catenary and industrial roller sieves were investigated. Point 
cloud data was acquired and processed to create a data 
processing pipeline for model initialization and update. A 
railway catenary is an example of a linear asset spread over a 
large area, while a roller sieve is process equipment fixed at a 
single location. Both assets have different requirements in 
terms of data collection, digital twin design, condition 
monitoring.  

4.1 Railway catenary 

The data collection was performed by mounting a LiDAR 
sensor in front of the locomotive, the raw data is processed and 
sliced into smaller files. The data is provided as “las” files of 
average size 250MB and provide point cloud covering 
approximately 200 meters along the tracks. 

4.1.1 Requirement 

The project aims to extract the position of the reinforcement 
conductor and detect the presence of other cables in the 
vicinity. The reinforcement conductor carries 15 KV and 
hence as per standards should have a clearance of 150 mm in 
static and 100 mm in a dynamic state. The cross-over point 
between the reinforcement conductor and tension wire is of 
special interest due to the hazard of short-circuit as shown in 
Fig. 2. Along with the catenary system about every 500 meters 
the tension wire crosses over in the close vicinity of the 
reinforcement conductor. Fig. 3 shows a projection of point 
cloud data and the cross-over point detected during data 
processing. 

 
Figure 2. Railway catenary and cross-over point 
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4.1.2 Information extraction 

The point cloud scan contains railway tracks, sleepers, masts, 
beams, catenaries, power cables, vegetation around the tracks, 
and geographical features. Data extraction is performed 
through various stages of processing namely filtering, ground 
plane removal, clustering, asset detection, and extraction. 

The wire cable points are extracted and fitted to polynomial 
equations. The relative locations of the curves to masts are 
used to classify the cables. Distances between the cables are 
used to calculate the vicinity of the conductors. From the 
detected tension wire curve, points in the vicinity are collected 
to detect infringement of standard distances. The data 
generated is exported as a hierarchal model. 

4.2 Rolling Sieve 

The point cloud is created with handheld LiDAR and multiple 
scans are performed and stitched together to provide full 
coverage of the sieve. The used file is about 1.6 GB in size 
with about 64 million points.  

4.2.1 Requirement 

The equipment for digital twinning is a roller sieve used to 
extract mineral pellets of a certain predefined size from the rest 
of the material with high consistency. The rollers in the sieve 
are adjustable to set the gap between them. An electro-
mechanical system is used to adjust the gap between individual 
rollers. The inter-cylinder gap of the individual roller can 
change over a period of time. This results in inconsistency in 
the size of the pellets retained at the end of the process. 

4.2.2 Information extraction 

Cylindrical rollers extraction was performed through 
segmentation and edge data from the cylinders was extracted 
since it has minimal wear. The top curvature of the individual 
cylinders was extracted and peak-to-peak distances in 3D 
space were extracted. The same processing was applied at both 
the ends of the cylinders. This data is exported and contains 
information on the position of the cylinders in 3D space. This 
data allows extracting sufficient information about the 
structural layout of the cylinders like the angle of the cylinder 
array, linear distance, and height information. This position 
information allows to store and analyze the positioning errors 
at a point in time and allows to observe degradation over a 
period of time. 

4.3 Creation of Digital Twin 

The first stage of the creation of the digital twin is the 
extraction of data and representation in a standardized format. 
In the case studies, the data is extracted through LiDAR sensor 
and exported as location, positional, or mathematical 
representation and not in the raw point cloud format. This 
allows reducing the amount of data to be transferred and shares 
a model of the equipment for the creation of DT using the FL 
model. 

Development of geometric DT of the models hence received is 
performed at a central location and updates the positional 
information of the equipment. This data is further processed to 
extract current conditions such as distance between wires in 
the case of railway catenary and relative positions of rollers in 
the case of the rolling sieve. The current processing has been 
limited to geometric analysis since a single scan per location 
has been performed. In the future work time-based analysis to 
extract the effect of weather and operating conditions will be 
performed.  

Additionally, as shown in Figure 1 visualization is an 
important part of the digital twin in the case of the physical 
infrastructure. This allows inspection of equipment located at 
various locations from a centralized point. The equipment 
model data is exported as 3D models for virtual reality and 
augmented reality systems.  

5. CONCLUSIONS 

This paper explores the requirements for the creation of Digital 
Twin (DT) through the use of Federated Learning (FL) in 
multi-stakeholder environments using LiDAR as the data 
source. Process flow for information extraction from point 
cloud data has been implemented and requirements of FL for 
DT have been explored. Data serialization, model ownership, 
provenance, and delegated architecture of DT have been 
identified as gaps in the current research. The future work will 
explore information generation from the DT for decision 
support, model state management, and serialization in the light 
of distributed ledgers. 
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