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Abstract

This paper proposes an automated pairing approach for configuration selection of

decentralized controllers which considers system uncertainties. Following the Relative

Interaction Array (RIA) pairing rules, the optimal control configuration, i.e. the con-

figuration that fits best the pairing rules, is obtained automatically by formulating the

control configuration selection problem as an Assignment Problem (AP). In this AP,

the associated costs related to each input-output pairing are given by the RIA coeffi-

cients. The Push-Pull algorithm is used to solve the AP for the nominal system and

to obtain the set of costs for which the resulting configuration remains optimal, also

called the perturbation set. The introduction of uncertainty bounds on the RIA-based

costs enables the testing of the possible violation of the optimality conditions. Examples

to illustrate the proposed approach for a 3×3 system and a 4×4 gasifier plant are given.

Keywords : Uncertain and multivariable systems, RIA uncertainty bounds, assignment prob-

lem, automatic optimal control configuration selection.
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1 Introduction

Robustness against loop failures and simple design/upgrade are among features which fa-

vor the widely spread use of decentralized control strategies in chemical processes such as

distillation column,1 pulp mill process,2 waste water treatment plant,3 etc. An essential

step in the design of decentralized control systems is finding the pairings of controlled and

manipulated variables which lead to minimal loop interaction. This step is referred to as

"input-output pairing" which is a possible approach for resolving the Control Configuration

Selection (CCS) problem.

It is well known that large scale systems are hierarchically structured into optimization

and control layers.4 The control layer is further decomposed into supervisory control (slow

layer) where advance control like for example model predictive control is frequently used, and

regulatory control (fast layer) where classical controllers like for example PID are employed.5

Selecting the best control configuration in a manual fashion among many available controlled

and manipulated variables, in the supervisory and regulatory control layer, is a tedious and

error-prone task. Moreover, neglecting the inherent uncertainty of system models in the

configuration selection and base the selection solely on a nominal model might be inadequate.

Uncertainties of the system model come from different sources such as parameter variation

of the models due to nonlinearities or variations in the operating conditions, or neglecting

system dynamics for the simplification of models, among others.4 The work in this paper

provides an approach to automate the input-output pairing while taking the effect of system

model uncertainties into account.

An approach to select control configurations is the use of Interaction Measures (IM) and

their associated pairing rules. The first IMs date back to 1960’s when Rijnsdorp introduced

the Interaction Quotient6 and Bristol introduced the Relative Gain Array (RGA).7 Since

then, many adaptations of the RGA as well as other IMs have been introduced to resolve

the CCS problem for a larger class of systems.8 Moreover, uncertainty bounds for the RGA

in the presence of model uncertainty where introduced by Chen and Seborg.9 Later, tighter
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bounds10 as well as more simplistic alternative bounds were proposed.11’.12 Additionally,

bounds on the Dynamic RGA for 2× 2 systems have been introduced.13

It is shown, to avoid performance degradation14 or even instability15 of the systems under

a decentralized controller, the configuration has to be selected in a manner that minimizes

the loop interaction. Using the RGA pairing rules there is no guarantee that the selected

configuration yields a minimum level of overall interaction since the RGA quantifies the

interaction for each control loop individually.16 Zhu addressed the problem of overall inter-

action reduction by introducing a new steady-state measure tool called Relative Interaction

Array (RIA) along with new pairing criteria,17 which actually relates to the above mention

interaction quotient. The new pairing rules also offer necessary conditions to satisfy closed-

loop stability, integrity and robustness. Therefore, a decision has been made to base the

optimal configuration selection on the pairing that fits the RIA pairing rules best.

The RGA-number4 can be seen as an automatic configuration selection tool based on

the RGA matrix. However, the RGA-number needs to be re-calculated for each possible

configuration, which might lead to large computational efforts as the size of the system

increases. To reduce the computational efforts of finding the optimal pairings for large-scale

systems, Kariwala and Cao18’19 proposed the branch and bound (BAB) approach in which

the RGA and the µ-interaction measure (µ-IM) are used as selection criteria. There, lower

bounds of the RGA-number and the µ-IM are derived and used in pruning the branches of the

solution tree that do not lead to optimal solution. A systematic algorithm to obtain candidate

pairings based on RGA and RIA properties was proposed by Kookos and Lygeros.20 The

basic idea behind that algorithm is formulating the problem of finding the configuration

that minimizes the interaction as a Mixed Integer Linear Programming (MILP) problem. In

a similar manner, Fatehi formulated the configuration selection problem as an Assignment

Problem (AP)21 leading to a method for automatic pairing selection. In this AP, the costs

associated to the assignment of the pairings is given by a pairing measure called Normalised

RGA (NRGA). The NRGA is obtained by means of a nonlinear map which maps the RGA
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values on the [0, 1] subspace.21 Yet the literature lacks bridging the automated configuration

selection with the effect of system uncertainties.

In addition to the methods based on relative gains, there are other families of CCS tools.

These include i) the gramian-based IMs, ii) methods using optimization techniques,22 iii)

methods for plat-wide control,23 or iv) methods for the reconfiguration of control systems.24

Perhaps, the most relevant family to survey in relation to the IMs based on relatives gains are

the gramian-bsed IM. The gramian-based IMs can be used to design sparse configurations

and use models with frequency-domain information. The gramin-based IMs have received

increasing attention since the introduction of the Participation Matrix (PM) by M. Salgado25

and the posterior introduction of HIIA26 and Σ2.27 A compelling aspect of these IMs, is that

gramians are the subject of a large volume of literature, and advances on gramians are

likely to have a straightforward application on CCS, like the use of the cross-gramian matrix

for bilinear systems.28 The gramian-bsed IMs compress frequency domain data in a single

measure, and therefore it is traditional to restrict the range of frequencies of interest with e.g.

the use of pref-filters.27 A traditional alternative to the filters is the straightforward use of the

frequency limited gramians defined in 1990 and which form part of the MATLAB since 2006.

The use of either filters27,29 or the frequency-limited gramians30 are equivalent alternatives

with the use of perfect filters.31 Additionally, there are a number of studies on bounds of

gramian-based IMs from uncertain models or directly from process data, including bounds

on PM,32–36 HIIA32 and Σ2.35–37 These bounds can be considered in the decision making

using an algorithm for automatic CCS.36

In this article an approach for automated control configuration selection considering the

system uncertainties is proposed. It excludes the configurations that lead to loss of stability

and integrity before looking for the optimal configuration among the rest. Basically, the

optimal control configuration is achieved from the nominal system at steady-state using AP

algorithm, namely the Push-Pull algorithm following the RIA pairing rules. The Push-Pull

algorithm also provides information to determine the perturbation set within which the opti-
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mality of the configuration is preserved. A verification step is to be performed to demonstrate

whether the optimal configuration is still the optimum one for the uncertain system or not.

Due to RIA stability and integrity requirements, the Push-Pull algorithm might indicate that

there is no feasible decentralized configuration which can stabilize the process with integrity.

This method will extend the capabilities of the software tool ProMoVis38 which currently

depends on the manual pairing selection by the user.

The structure of the paper is as follows. First, conceptual overview of the proposed

approach is given in Section 2 followed by a brief description for the RIA and its pairing rules

in Section 3. In Section 4, the relationship between the CCS and the AP, the perturbation

set and the automated configuration selection are stated. The uncertainty bounds of the

RIA are derived in Section 5. In Section 6 the change in the absolute RIA is formulated

as a polytopic model and the proposed approach is presented as an algorithm in Section 7.

Illustration of the proposed approach using examples is given in Section 8. The article is

closed with conclusions and suggested future work in Section 9.

2 Conceptual Overview

In the proposed approach, the optimal configuration selection is achieved automatically us-

ing the Push-Pull algorithm according to the RIA pairing rule of minimizing the overall

interaction. However, the RIA elements with lower uncertainty bounds not satisfying the

requirements for the stability and integrity are removed before performing the Push-Pull

algorithm. Thus, the optimal control configuration in this article is understood as the con-

figuration that minimizes the overall interaction as well as fulfils the stability and integrity

requirements based on the RIA definition. The pairing based on the RIA criteria is adopted

here since it does not only offer a comprehensive solution for the configuration selection

but also fits the AP terminology without modification. Then, utilizing a perturbation set,

the proposed approach verifies whether the optimal configuration selection is still optimum
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under particular system uncertainties or if a change is expected. The perturbation set is

determined using information obtained as a by-product of the Push-Pull algorithm.

The following phases summarize the core of the proposed approach:

(i) Obtaining the optimal configuration selection automatically based on the nominal sys-

tem at steady-state and the uncertainty bounds of the RIA elements using the Push-

Pull algorithm. However, by removing the pairs that might lead to lose stability and

integrity, there is a chance the Push-Pull algorithm gives no solution. Such a case

means that there is no feasible configuration and thus no decentralized controller can

satisfy the stability and integrity requirements for the uncertain system (see Section 4

and Section 5).

(ii) Obtaining the perturbation set for which the optimal configuration based on the nomi-

nal system is still the optimum for uncertain system. The Push-Pull algorithm provides

information to produce the halfspace equations from which the perturbation set is de-

termined (see subsection 4.2).

(iii) Calculating the uncertainty bounds of the absolute RIA caused by the uncertainty in

the system gains. The information provided by RIA uncertainty bounds is to be used

in the verification phase (see the details in Section 5).

(iv) Verifying whether the calculated uncertainty bounds of the absolute RIA obtained in

(iii) satisfy the perturbation set determined in (ii). If so, the optimal configuration

selection obtained in (i) is optimum for the perturbed system; otherwise it still satisfies

the stability and integrity conditions for the perturbed system but does not minimize

the overall interaction (see Section 6 for the details).

It is worth mentioning that the Push-Pull algorithm in (i) is performed only once on

the RIA matrix obtained from the nominal system in order to find the optimal pairing,

if there is any. In addition, the difference between the absolute nominal and perturbed

RIA values is written in a polytopic form to simplify the verification process in (iv).
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Using simple mathematical operations, the vertices of the polytope are checked for sat-

isfying the perturbation set and a conclusion can be drawn regarding the preservation

of the pairing optimality.

3 RIA and its Pairing Rules

Consider a multivariable transfer function G(s) with input vector u ∈ Cn and output vector

y ∈ Cn under decentralized control. For a Single-Input-Single-Output (SISO) control loop

connecting the pair (yi−uj), a change in uj would influence yi directly through the elementary

transfer function (gij) and indirectly through the possible loop interaction.16 Therefore, the

response of yi to the change can be expressed as

yi(s) = [gij(s) + aij(s)]uj(s) (1)

where aij, the absolute interaction, represents the effect of the other control loops on the

(yi − uj) pair due to loop interaction.16

Defining the relative interaction 17 as

φij(s) =
aij(s)

gij(s)
(2)

the response of yi in (1) is written8 as

yi(s) = gij(s)[1 + φij(s)]uj(s) = g̃ij(s)uj(s) (3)

where the term [1 + φij(s)] measures the amplification or attenuation in the gij due to loop

interaction effect. Following the determination of aij using the signal-flow graph technique,

φij can be obtained.16 The steady-state aij(0)17 is defined as (seeking simplicity, the (0) of
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the steady-state is dropped and will only be used where needed)

aij =
1

[G−1]ji
− gij (4)

under the following assumptions

1. the closed-loop system has integrity against any single-loop failure, and

2. each controller contains an integral action in each control loops.

Hence, from (2) and (4), the RIA matrix (Φ) is calculated in terms of its ij-elements as

[Φ]ij =
1

gij[G−1]ji
− 1 =

1

[Λ]ij
− 1 (5)

where Λ is the RGA matrix calculated by

Λ = G× (G−1)T (6)

with × and T denote element-by-element multiplication and matrix transpose, respectively.

Finally, RIA pairing rules state that17 the input-output variables should be paired so

that

(a) Niederlinski Index (NI)> 0 (stability rule).

(b) φij > −1 (integrity rule).

(c) avoiding φij close to −1 (robustness rule), and

(d) min
∑
|φkij| (overall interaction rule).

where φkij represents the pairing elements corresponding to the kth possible pairing that

satisfies the first three rules. Notice that, the stability condition (NI > 0) is fulfilled by

avoiding pairs corresponding to φij ≤ −1.17 Thus, in order to satisfy stability and integrity

conditions, pairs corresponding to φij ≤ −1 have to be avoided.

8



Direct extension of (4), (5) and the pairing rules to frequencies other than the steady-

state seems a straightforward approach, but has not been proven to be valid for the RIA.

One of the basic assumptions for the RIA and also the RGA is the perfect control condition,

which in turn might lead to inaccuracies.16’17 Thus, the proposed approach is only applied

in steady-state case.

4 Assignment Problem, Push-Pull algorithm and Auto-

mated Control Configuration Selection

In this section a description of the AP is introduced and the reason for choosing the Push-

Pull algorithm to solve the AP is explained. Later, the formulation of the CCS problem as

an AP is given.

4.1 The Assignment Problems

The Assignment Problem (AP) is a special type of the Transportation Problem (TP). The

TP deals with finding the minimum cost of transporting products from several manufactures

to several consumers whereas the output of the AP is assigning one manufacturer to one and

only one consumer so that the transportation cost is minimized. With (cij) being the cost

of conveying a single product from manufacturer (i = 1, .., n) to consumer (j = 1, .., n), the

AP is represented mathematically39 as

min
n∑
i=1

n∑
j=1

cijxij (7)

subject to
n∑
j=1

xij = 1 for i = 1, · · · , n

and
n∑
i=1

xij = 1 for j = 1, · · · , n

where xij = 0 or 1 for all i and j
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In the above, the one and only one condition is represented in the first and second constraints.

The control configuration selection is analogous to the AP, in the sense that the designer

aims at selecting the input-output pairs (assigning one input to one and only one output)

that minimizes the effect of the loop interaction, equivalent to the cost in the TP terminology.

4.2 Push-Pull Algorithm and Perturbation Set

Although the AP is a special type of Linear Programming (LP) optimization problem which

is usually solved by utilizing the Simplex algorithm,39 methods such as Stepping-Stone and

Hungarian algorithm are widely used to get the optimal solution.40 The sensitivity analysis

is used to investigate the effect of changing cij in (7) on that optimal solution. However,

Stepping-Stone and Hungarian algorithms do not provide useful information to perform the

sensitivity analysis for the AP due to an inherent degenerated optimal solution (degener-

ated when right-hand-side (RHS) = 0).40 In that direction, Adlakha and Arsham proposed

the Push-Pull algorithm which provides a solution to the AP and enough information to

determine the perturbation set for which the optimal solution is preserved.40

For a thorough understanding of the Push-Pull algorithm, the reader is referred to the

work of Adlakha et al.40 and Arsham et al.41’42 In general, the Push-Pull algorithm is

a Simplex type algorithm that consists of an Initialization phase as well as Push and Pull

iterative phases. In the Initialization phase an initial tableau with some basic variables (BV)

is generated. The BV are members of the basic variable set (BVS), which represents the

solution of the AP given in (7). Throughout the Push phase, the BVS in the initial tableau

is being contentiously filled with basic variables while being pushed towards the optimum

corner. However, the feasibility may not be preserved in the Push phase (RHS < 0), in such

a case, the Pull phase pulls back the BVS to the feasible corner.40 Eventually, the Push-Pull

algorithm provides the optimal solution of (7) (i.e. BVS) including the information necessary

for calculating the perturbation set (θ) from the final tableau. The perturbation set (θ) is
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determined as a function of the change in the cost cij (ćij) in the AP given in (7) as

θ = {ćij|CN − CB.[A] ≥ 0} (8)

where CB is a row vector comprising the new costs corresponding to the basic variables set

(BVS) while CN is a row vector comprising the new costs corresponding to the non-basic

variables (non-BV). [A], on the other hand, denotes a matrix/vector obtained from the final

tableau of the Push-Pull algorithm. To preserve the optimal solution of (7) for the perturbed

case, the change in the costs has to satisfy the perturbation set (θ).

4.3 RIA-Based Automated Configuration

Since xij are either zeros or ones for the AP as in (7), |φkij| in RIA pairing rule (d) given in

Section 3, is analogue to the cij in (7). Thus, pairing rule (d) can be rewritten as

min
φij∈Ω

n∑
i=1

n∑
j=1

|φij|xij (9)

subject to
n∑
j=1

xij = 1 for i = 1, · · · , n

and
n∑
i=1

xij = 1 for j = 1, · · · , n

where xij = 0 or 1 for all i and j

where Ω = {φij : φij > −1}.

Notice that, the n′s in (9) represent the system size rather than the number of the

manufacturers and consumers in (7).

The Push-Pull algorithm is hence used to assign values of 1 to the xij in (9) that correspond

to the optimal |φij| that would lead to the minimization of the overall loop interaction.

The optimal |φij| are the φ′s with values close to zero in order to keep the term [1 + φij]

in (3) as close as possible to 1. In other words, the pairs that corresponds to xij = 1 are
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selected such that the loop interaction effect is minimized by keeping g̃ij in (3) as close as

possible to gij. Moreover, the closed-loop stability and integrity conditions in the respective

rules (a) and (b) is to be fulfilled by removing the pairs corresponding to the φij ≤ −1

from the initial tableau before performing the Push-Pull algorithm. Thus, the automated

optimal configuration selection satisfies the stability condition by default in contrast to the

approach presented by Fatehi21 which proposes switching to the suboptimal pairing if the

optimal one does not satisfy the stability condition. As for rule (c), it is satisfied since the

pairs corresponding to the φij close to zero will be selected while performing the Push-Pull

algorithm. However, removing the pairs corresponding to the φij ≤ −1 from the initial

tableau is valid for the unperturbed systems. For perturbed systems GP , removing the pairs

correspond to the perturbed RIA (φPij) with lower bounds ≤ −1 has to be considered. The

uncertainty bounds of the RIA elements are derived in the next section.

5 RIA Uncertainty Bounds

Many sources lead to model uncertainties such as process perturbations, linear approxi-

mations around specific operating points, or neglecting higher order dynamics. Chen and

Seborg9 had revealed the importance of considereing model uncertainties in the pairing se-

lection. Prior to the application of the introduced automatic pairing method in Section 4,

it is required to derive the uncertainty bounds on the RIA caused by the uncertainties of

the system gains. These bounds are used to: i) satisfy the closed-loop stability and integrity

requirements for uncertain systems following pairing rules (a) and (b), by removing from the

feasibility set those pairings that correspond to RIA elements having lower bound ≤ −1. ii)

check if the optimality of the configuration obtained with the automatic pairing is preserved

for perturbed system.

Using Taylor’s series expansion and by truncating after the first-order term, the perturbed
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ij−element in RIA matrix (φPij) can be approximated as

φPij ≈ φij +
n∑
k=1

n∑
l=1

(
∂φij
∂gkl

)
G

(δgkl) (10)

where φij is the ij−element in RIA calculated based on the nominal system G, δgkl is the

difference between the perturbed and nominal kl−element of G and ∂φij
∂gkl

is given as in (11)

(see the full derivation in the Appendix)

∂φij
∂gkl

=



−φij
gij

i = k and j = l

(φij+1)

(φkl+1)gkl
i = k or j = l

(
− (−1)i+j+k+lgijdet(G

ij,kl)(φij+1)

det(G)
+ 1

(φkl+1)gkl

)
(φij + 1) i 6= k and j 6= l

(11)

Taking the absolute value of both sides, (10) is re-written as

|φPij − φij| =|
n∑
k=1

n∑
l=1

(
∂φij
∂gkl

)
G

(δgkl) | (12)

Using the fact |a+ b| ≤ |a|+ |b|, (12) can be written as

|φPij − φij| ≤
n∑
k=1

n∑
l=1

|
(
∂φij
∂gkl

)
G

(δgkl) | (13)

The uncertainty bounds of the perturbed RIA elements (φPij) can be found by applying

|a| ≤ b⇔ −b ≤ a ≤ b on (13) as

φPij︷ ︸︸ ︷
φij −

n∑
k=1

n∑
l=1

|
(
∂φij
∂gkl

)
G

(δgkl) | ≤ φPij ≤ φij +
n∑
k=1

n∑
l=1

|
(
∂φij
∂gkl

)
G

(δgkl) |︸ ︷︷ ︸
φPij

(14)
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Accordingly, (9) has been adjusted for the perturbed systems as

min
φij∈ΩP

n∑
i=1

n∑
j=1

|φij|xij (15)

subject to
n∑
j=1

xij = 1 for i = 1, · · · , n

and
n∑
i=1

xij = 1 for j = 1, · · · , n

where xij = 0 or 1 for all i and j

where ΩP = {φij : φPij > −1}.

Since rule (d) involves the absolute RIA values, the bounds of |φPij| have to be engaged in

the optimality verification. The uncertainty bounds of |φPij| are derived using the definition

of the absolute function as in (18) after rewriting (14) in an affine parameter-dependent

model as

φPij = φij + δφij (16)

where δφij is bounded as

δφij︷ ︸︸ ︷
−

n∑
k=1

n∑
l=1

|
(
∂φij
∂gkl

)
G

(δgkl) | ≤ δφij ≤
n∑
k=1

n∑
l=1

|
(
∂φij
∂gkl

)
G

(δgkl) |︸ ︷︷ ︸
δφij

(17)


0 ≤ |φPij| ≤ max(|φij + δφij|, |φij + δφij|) if φij + δφij ≥ 0 and φij + δφij ≤ 0

min(|φij + δφij|, |φij + δφij|) ≤ |φPij| ≤ max(|φij + δφij|, |φij + δφij|) otherwise
(18)

Notice that (14) will be used to satisfy the pairing rules (a) and (b) for the uncertain sys-

tems by avoiding the pairs correspond to φPij ≤ −1 while the upcoming equations (21) and
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(22) which are derived from (18) are the ones to be used to verify the validly of the optimal

configuration obtained from the nominal system (G) under the effect of the uncertainty.

The uncertainty bounds of φPij given by (14), following the Chen and Seborg9 approach,

are rather conservative. For curious readers, an alternative method to calculate the uncer-

tainty bounds of RIA elements (φij), rather than (14), is discussed in Appendix.

However, the proposed approach is designed such that it does not depend on specific

uncertainty bounds for the RIA. In that sense better bounds could be easily integrated

instead of the currently used ones.

6 The Polytopic Model and the Model Vertices

As seen from (8), the perturbation set (θ) is a function of the change in the cost (ćij).

Notice that, the transportation individual costs (cij’s) in the AP given in (7) are usually

either increased or decreased by a certain amount and it rarely happens that all of them are

changed at the same time unless there is a market crises. Thus, verifying the preservation

of the optimal solution of (7) is rather easy in the marketing field. On the contrary, a

change in a single system gain (gij) will affect all elements of the RIA matrix and produce

an uncertainty bound around each of them as one can see from (14). As a result, an efficient

way is needed to account for the effect of the change in the system gains on the absolute

RIA elements and to simplify the verification of whether the change in the absolute RIA

elements (|φPij| − |φij|) satisfies the perturbation set (θ).

Therefore, the change in the absolute RIA matrix, |ΦP |−|Φ|, is chosen to be written in an

affine parameter-dependent model which can be easily represented by a polytopic model.43

Since the polytopic model of the change in the absolute RIA matrix and the halfspaces of

the perturbation set (θ) constitute two convex sets, it is convenient to draw a conclusion

about the preservation of the pairing optimality by checking whether the vertices of the

polytopic model satisfy the perturbation set. More specifically, if all possible vertices satisfy
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the perturbation set (θ), the optimal configuration obtained from the nominal system is still

the optimal for the uncertain system. Otherwise, the optimality of the configuration for the

uncertain system is not guaranteed.

The affine parameter-dependent model of the change of the absolute of RIA can be written

after taking the absolute, generalizing and adding (−|Φ|) to both sides of (16) as

|ΦP | − |Φ| =
n∑
i=1

n∑
j=1

PijSij (19)

and Pij is bounded as

Pij ≤ Pij ≤ Pij (20)

where Pij and Pij are given in (21) and (22), respectively.

Pij =


−|φij| if φij + δφij ≥ 0 and φij + δφij ≤ 0

min(|φij + δφij|, |φij + δφij|)− |φij| otherwise
(21)

Pij = max(|φij + δφij|, |φij + δφij|)− |φij| everywhere (22)

In (19), Sij is an n× n matrix with (ij)-element equals to 1 and all other elements equal

to 0, for example S11 and S21 in a 3× 3 system would look like

S11 =


1 0 0

0 0 0

0 0 0

 , S21 =


0 0 0

1 0 0

0 0 0


The matrix Sij is imposed to make the sides of (19) consistent as the left side is written in

a matrix form while the right side is expressed by the P ′s of the (ij)-elements.

To aggregate all the possible vertices (v1, v2, · · · , v2n×n) of the model (19) resulted from
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the variations of Pij for i, j = 1, 2, ..., n, a binary counter style is employed since each Pij is

bounded by a low and a high value, i.e Pij and Pij.

Thus, the vertices (v1, v2, · · · , v2n×n) are written as

v1 =



P11

P12

P13

...

Pnn


, v2 =



P11

P12

P13

...

Pnn


, · · · , v2n×n =



P11

P12

P13

...

Pnn


(23)

However, the number of vertices is reduced by the number of omitted φij correspond to

φPij ≤ −1. Thus, the user has to check 2
(n×n)−nφPij≤−1 vertices, where nφPij≤−1 denotes the

number of the omitted φij.

7 Algorithm of the Proposed Approach

An algorithm that summarizes the approach and its prerequisites is given as follows and

demonstrated by a flowchart as shown in Figure 1.

8 Examples

The proposed approach is elucidated in this section by means of two examples. The first

deals with the approach’s Output1 and Output2 while in the second, a steady-state gain

matrix of ALSTOM gasifier plant is used to discuss Output3.

17



G(0)
and δG

s1. Calculate Φ by (5)

s2. Calculate φPij
bounds by (14)

s3. Perform Push-Pull al-
gorithm on |Φ| − ΦP ≤ −1

solution
exists

s4. Obtain the
optimal pairing

s5. Determine pertur-
bation set (θ) by (8)

s6. Calculate Pij and
Pij by (21) and (22)

s7. Formulate the
vertices (v’s) as in (23)

s8.All v’s
satisfy θ

Output2 Output3Output1

YESNO

No

Yes

Figure 1: Flowchart of the proposed approach where the trapezoidal blocks refer to the
input and outputs information and s is an abbreviation for step. Output1 refers to no
decentralized controller stabilizes GP exists. Output2 refers to the optimal configuration
selection obtained in step 4 is still optimum for GP . Output3 refers to the configuration
obtained in step 4 satisfies the stability and integrity conditions for GP but minimizing the
overall interaction is not guaranteed.
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The algorithm of the proposed approach

Input. The steady-state gain matrix of the nominal system G(s) and the system uncertainty δG.
step 1. Calculate RIA (Φ) using G(0) by (5).
step 2. Calculate the lower uncertainty bound of the perturbed RIA elements (φPij)

by (14) for i, j = 1, 2, ..., n.
step 3. Perform the Push-Pull algorithm on |Φ| after omitting all φij correspond to φPij ≤ −1,

if no solution exists
then Output1 no decentralized controller stabilizes the uncertain system (GP ) exists.
else do

step 4. Obtain the optimal configuration selection for the nominal system G.
step 5. Determine the perturbation set (θ) by (8).
step 6. Calculate Pij and Pij for i, j = 1, 2, ..., n (except for those correspond to φPij ≤ −1)

through (21) and (22).
step 7. Formulate the vertices as in (23).
step 8. Verify whether the vertices in (23) satisfy the perturbation set (θ) determined from step 5,

if all vertices satisfy the perturbation set (θ)
then Output2 the optimal configuration selection obtained in step 4 is still optimum
for the perturbed system (GP ).
else Output3 the configuration obtained in step 4 satisfies the stability and integrity
conditions for GP but minimizing the overall interaction is not guaranteed.

8.1 Example 1

Consider the following nominal system given by

G(s) =


−2

10s+1
1.5
s+1

1
s+1

1.5
s+1

1
s+1

−2
10s+1

1
s+1

−2
10s+1

1.5
2s+1

 (24)

and an additive uncertainty is given by

|δG| ≤ α|G(0)| (25)

with α = 0.01.

Applying step 1, the Φ matrix is obtained as
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Φ =


−2.0750 −0.1569 0.3437

−0.1569 0.3438 −2.0750

0.3437 −2.0750 −0.1569


The lower uncertainty bound of the perturbed RIA elements are calculated as in step 2 using

(14). The lower uncertainty bound values (φPij) are aggregated in the following matrix

ΦP =


−2.2253 −0.2287 0.2282

−0.2287 0.2282 −2.1924

0.2282 −2.1924 −0.2118


As one can notice, φP11, φP23 and φP32 have values < −1 and thus the configurations that

involve any pair corresponds to φ11, φ23 or φ32 are to be removed in step 3 by eliminating

the columns x11, x23 and x32 from the initial tableau. In that way, by applying the Push-Pull

algorithm on |Φ|, the user is seeking the configuration which minimizes the loop interaction

effect among only the configurations that satisfy the stability and integrity conditions. Not

surprisingly, a solution to the Push-Pull algorithm in this case is expected to exist since 2

configurations are left after removing the ones which may lead to lose stability and integrity.

The output of the Push phase is shown in Table 1. Since all the RHS elements are non

Table 1: Final tableau

BVS x22 RHS
x12 1 1
x21 1 1
x33 1 1
x13 -1 0
x31 -1 0

negative, there is no need to perform the Pull phase. Thus, the optimum configuration
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selection corresponds to BV x12, x21 and x33 in the final tableau, congruous to y1−u2, y2−u1

and y3−u3. Both x13 and x31 are neglected since they are associated with zeros in the RHS

and thus step 4 is done. However, the configuration selection satisfies to the pairing rules for

the nominal system G given in (24) and remaining algorithm steps of the proposed approach

need to be performed to validate this configuration for the perturbed system. Thereafter,

the information provided by the Push-Pull algorithm is used to determine the perturbation

set (θ) on which the optimal configuration obtained from the nominal system G is still valid.

The perturbation set is defined40 as

θ = {Pij|CN − CB.[A] ≥ 0} (26)

where CB is a row vector with elements equal to |φij|+ Pij correspond to the BVS and CN

is similar to CB except with the elements correspond to the non-BV while [A] denotes the

matrix/vector obtained from the final tableau. Particularly, for this example

CB = [|φ12|+ P12,|φ21|+ P21, |φ33|+ P33,

|φ13|+ P13, |φ31|+ P31]

CN = [|φ22|+ P22]

and

A = [1 1 1 −1 −1]T

thus, the perturbation set (θ) is obtained as

θ = {Pij|P13 − P12 − P21 + P22

+ P31 − P33 + 0.5606 ≥ 0} (27)
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Keep in mind that Pij in (27) are bounded sets according to (20) rather than certain values

as of ćij in (8) in the marketing field. Furthermore, there are two zeros in the RHS of Table

1 therefore the degenerated phase has to be performed to modify the perturbation set (θ).40

Fortunately, the perturbation sets provided from the degenerated phase coincide with (27)

and thus no modification is needed and step 5 of the proposed approach is completed.

Step 6 of the proposed approach is to calculate the bounds of the P ’s employing (21) and

(22) except for those correspond to φPij ≤ −1. The bounds are to be used to determine the

vertices to be utilized in the verification process. Thus, for

GP = G(0) + δG (28)

the bounds of the P ’s are found as

−0.071 ≤ P12 ≤ 0.071

−0.115 ≤ P13 ≤ 0.115

−0.071 ≤ P21 ≤ 0.071

−0.115 ≤ P22 ≤ 0.115

−0.115 ≤ P31 ≤ 0.115

and

−0.054 ≤ P33 ≤ 0.054
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Following step 7, the (2(3×3)−3 = 64) vertices are formulated as

v1 =



−0.071

−0.115

−0.071

−0.115

−0.115

−0.054


, v2 =



0.071

−0.115

−0.071

−0.115

−0.115

−0.054


, · · · , v64 =



0.071

0.115

0.071

0.115

0.115

0.054


(29)

Step 8 of the proposed approach is checking whether the vertices given in (29) satisfy the

perturbation set condition given in (27). Since all the vertices satisfy the perturbation set,

the optimality of the configuration selection obtained from the nominal model (24) in step

4 is still valid for the uncertain system defined by (28).

In order to validate the optimal pairing decision obtained from the above, two decentral-

ized controllers, each consists of 3 IMC’s controllers, are employed. The input and output

variables of the perturbed system defined by G(s) + δG are paired based on the optimal

configuration and on the off-diagonal pairing (which is the remaining configuration after

removing the ones which may lead to lose stability and integrity) as shown in Figure 2 and

Figure 3, respectively.

r1

r2

r3

y1

y2

y3

C1

C2

C3

G(s)+δG

+

+

+

-

-

-

u1

u3

u2

Figure 2: The closed-loop of the perturbed system and the decentralized controller based on
the optimal configuration selection.

The C’s and K’s IMC controllers are selected based on the nominal system44 given in
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r1

r2

r3

y1

y2

y3

K1

K2

K3

G(s)+δG

+

+

+

-

-

-

u1

u3

u2

Figure 3: The closed-loop of the perturbed system and the decentralized controller based on
the off-diagonal pairing.

(24) as

C1 =
g−1

21

2s
, C2 =

g−1
12

2s
and C3 =

g−1
33

2s

where

g21 = g12 =
1.5

(s+ 1)
and g33 =

1.5

(2s+ 1)

while

K1 =
g−1

31

2s
,K2 =

g−1
22

2s
and K3 =

g−1
13

2s

with

g31 = g22 = g13 =
1

(s+ 1)

Figures 4 and 5 show the responses of the interaction-free, nominal and perturbed systems

under the optimal and the off-diagonal pairing respectively, for the set-point changes in the

references r1, r2 and r3 at 10, 60 and 110 sec. The perturbed systems are simulated by

selecting 100 uniformly distributed random values of δG that satisfy (25) and adding each to

the nominal system gains of (24). By plotting the responses of the interaction-free system,

the effect of the interaction on the responses under the used configurations could easily be

observed. It is worth noting that the responses of the perturbed systems are closely around

the response of nominal system under the optimal configuration as can be seen from the

enlarged sample region in Figure 4.
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Figure 4: Set-point change responses of the interaction-free, nominal system and perturbed
systems under optimal pairing. Dashed: the reference signals. Dash-dotted: response of the
interaction-free system. Solid: response of the nominal system given in (24). Shade-line:
responses of 100 perturbed systems.
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Figure 5: Set-point change responses of the interaction-free, nominal system and perturbed
systems under off-diagonal pairing. Dashed: the reference signals. Dash-dotted: response of
the interaction-free system. Solid: response of the nominal system given in (24). Shade-line:
responses of 100 perturbed systems.
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The integral square error (ISE) of ei = yi − ri expressed by

J =
n∑
i=1

∫ tend

0

e2
i dt

with tend=150 sec and n=3 is used as a control performance indication. The J values of

the responses of the closed-loop systems for the different cases are depicted in the Table 2.

Notice that, the interaction-free systems under both configurations have the same J value

which is quite expected from their responses in Figure 4 and Figure 5. Moreover, as δG

in (25) is bounded, the J appears as an interval, [Jmin Jmax], in the uncertain systems

cases. The J values of the nominal and uncertain systems under the optimal configuration

Table 2: ISE for the different closed-loop cases

System Configuration J
interaction-free optimal/off-diagonal 3.152

nominal optimal 4.201
uncertain optimal [4.048 4.359]
nominal off-diagonal 16.316
uncertain off-diagonal [14.058 19.877]

selection compared to the values under the off-diagonal pairing confirm the result of the

proposed approach which states that the optimal configuration of the nominal system is still

optimal for the systems perturbed by (25).

In order to give a glimpse on the case where the Push-Pull algorithm gives no solution,

α = 0.3 in (25) with the same nominal system are processed. In this case, ΦP is obtained as

ΦP =


−6.584 −2.312 −3.120

−2.312 −3.120 −5.597

−3.120 −5.597 −1.806


As all the values are < −1 then all possible pairs violate the stability and integrity conditions
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and no pair can be suggested. Technically, there will be no enough data to formulate the

initial tableau of the Push-Pull algorithm since all φij correspond to the φPij ≤ −1 are to

be removed at early stages of the algorithm. Consequently, the Push-Pull algorithm will

give no answer. To motivate the instability concern that might occur, the simulation of the

system under the optimal configuration selection in Figure 2 is re-performed for the new α

and the results are presented in Figure 6. The results show satisfactory, sluggish as well as

unstable perturbed systems responses. Obviously, the unstable responses draw the attention

of the user for how they can be avoid. Suggesting no decentralized controller in the early

stage of the proposed approach guides the user to look for other alternatives such as sparse

or centralized controllers.
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Figure 6: Set-point change responses of the nominal system and the new perturbed systems.
Dashed: the reference signals. Solid: response of the nominal system given in (24). Shade-
line: responses of new 100 perturbed systems.
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8.2 Example 2

Consider a steady-state gain matrix of ALSTOM gasifier plant45 given as

G(0) =



0.0385 −0.0427 0.0444 −0.0474

−0.1115 −0.0297 0.0770 −0.0142

0.0327 0.8630 0.0477 0.5019

0.0088 0.1284 −0.1101 −0.2834


(30)

and consider the plant to be subject to an additive uncertainty given by

|δG| ≤ α|G(0)| (31)

with α = 0.135.

The Φ is obtained by employing step 1 as

Φ =



2.0244 −19.5242 0.8513 4.4266

0.5023 −40.236 1.9544 45.8123

98.952 0.1361 23.329 13.559

−193.38 4.0186 11.459 0.378


Preforming step 2 gives the lower uncertainty bound values (ΦP ) as in the following matrix

ΦP =



0.7412 −47.5653 −0.5290 −1.3845

−0.1557 −81.0691 −0.1485 −0.8622

−6.0296 −0.3017 6.7447 −8.8358

−501.2177 0.0665 −6.3258 0.1565


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Consequently, any pair correspond to φ12, φ13, φ22, φ31, φ34, φ41 and φ43 are to be remove

during the Push-Pull algorithm since their values are < −1. The optimal configuration

selection and the perturbation set are obtained after performing the Push-Pull as in step

3. The final tableau is depicted in Table 3. The optimal configuration selection is (y1− u3),

Table 3: Final tableau

BVS x23 x24 RHS
x13 1 1 1
x21 1 1 1
x32 0 1 1
x44 0 1 1
x42 0 -1 0
x11 -1 -1 0
x33 0 -1 0

(y2− u1), (y3− u2) and (y4− u4) corresponds to the BVS in the final tableau excluding x42,

x11 and x33 that have value of zero in the RHS column and thus step 4 is completed. The

perturbation set (θ) including the output of the degenerated phase is given by

θ = {Pij|P11 − P13 − P21 + P23 + 2.6351 ≥ 0

P11 − P13 − P21 + P24 − P32 + P33 + P42

− P44 + 73.327 ≥ 0

P24 − P23 − P32 + P33 + P42 − P44 + 70.691 ≥ 0}

(32)

Obtaining the perturbation set (θ) ends step 5 of the proposed approach. In step 6, the

bounds in (21) and (22) are calculated to formulate the vertices of the polytopic model as

in step 7. For the uncertain system

GP = G(0) + δG (33)
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the uncertainty bounds of the P ’s (except for those associated to φPij ≤ −1) are found as

−1.293 ≤ P11 ≤ 1.293

−4.426 ≤ P14 ≤ 5.8111

−0.502 ≤ P21 ≤ 0.657

−1.954 ≤ P23 ≤ 2.102

−45.812 ≤ P24 ≤ 46.674

−0.136 ≤ P32 ≤ 0.437

−16.584 ≤ P33 ≤ 16.584

−3.952 ≤ P42 ≤ 3.952

and

−0.221 ≤ P44 ≤ 0.221

The verification process, step 8, reveals that there are many among the (2(4×4)−7 = 512)
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vertices do not satisfy the perturbation set (θ). For example the vertices

v159 =



−1.293

5.811

−0.502

−1.954

46.674

0.437

16.584

3.952

−0.221



, v470 =



1.293

5.811

0.657

−1.954

46.674

−0.136

16.584

−3.952

0.221



and v478 =



1.293

5.811

0.657

−1.954

46.674

0.437

16.584

−3.952

0.221



(34)

do not satisfy the inequality

P11 − P13 − P21 + P23 + 2.6351 ≥ 0

Therefore, the optimality of the configuration selection obtained from the nominal system G

given by (30) is not guaranteed with respect to the perturbed system GP given by (33). To

conclude, the configuration obtained based on the nominal system satisfies the closed-loop

stability and integrity requirements but not minimize the loop interaction of the perturbed

system.

For more thorough discussion, a particular uncertain system which belongs to the uncer-

tainty set defined by (33) is considered as

GP1 = G(0) + δG1
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where

δG1 = 0.135|G(0)| ×



1 1 −1 1

1 1 1 −1

1 −1 −1 1

−1 1 1 −1


with × denoting element-by-element multiplication.

The RIA matrix of the uncertain system (GP1), which is given by

ΦP1 =



1.1187 −29.8732 1.2286 7.7772

0.9413 −40.8102 1.0474 45.369

62.9303 0.2411 28.2304 5.9247

−363.0956 2.9367 33.9005 0.3887


shows that the pairs (y1−u3) and (y2−u1) obtained based on the nominal system (30) should

be replaced by (y1−u1) and (y2−u3), respectively. In other words, using φ11 and φ23 in ΦP1

results in a less value for the summation in pairing rule (d) than φ13 and φ21. Therefore,

the optimal configuration selection for the uncertain system (GP1) is (y1 − u1), (y2 − u3),

(y3−u2) and (y4−u4) rather than the previous configuration obtained based on the nominal

system. In order to confirm and compare this result with a different approach, the optimal

pairing of nominal system (G(0)) and GP1 are analyzed following the BAB method19. The

application of the method could confirm the new optimal pairing for GP1. Nevertheless,

the conditions of the closed-loop stability and integrity of the uncertain system (GP1) under

previous configuration are fulfilled since φP13, φP21, φP32 and φP44 are not close to or ≤ −1.

In short, the previous configuration obtained from the nominal model G satisfies closed-

loop stability and integrity requirements of the uncertain system (GP1) but does not minimize

the loop interaction effect. This result coincides with the prediction of the proposed approach

based on lower uncertainty bounds analysis and vertices verification.
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9 Conclusion and Future Work

An approach for automated control configuration selection considering the system uncer-

tainties is proposed. The optimal configuration based on the nominal system is obtained

systematically by formulating the overall interaction rule of the RIA as an assignment prob-

lem and solving it using the Push-Pull algorithm. That has been done after removing any

pair that does not satisfy the stability and integrity conditions utilizing the uncertainty

bound of the RIA elements. The proposed approach employs both the perturbation set and

the uncertainty bounds of the absolute RIA elements to verify whether the obtained opti-

mal configuration is still optimum under presence of a specific perturbation or a change is

expected. The approach has been validated by simulation examples for a 3×3 system and

the 4×4 ALSTOM gasifier plant, respectively.

The presented approach offers a novel tool to suggest a control configuration for a system

subject to perturbation, yet there are some shortcomings that should be addressed. Despite

the fact that the Push-Pull algorithm solves the optimization problem only once, the num-

ber of vertices increases relatively with the system size leading to a prolonged time in the

validation process for large systems. Besides, the uncertainty bounds of the RIA elements

need to be tightened to overcome the possible conservatism in the pairing decision in real

world applications. However, the proposed algorithm is independent on those bounds in the

sense that whenever new bounds are found, they can be directly integrated.

The proposed approach assures the pairing optimality preservation if all model vertices

satisfy the perturbation set. A systematic procedure to be developed investigating the effect

of the vertices out of perturbation set to assure the optimality change occurrence. Moreover,

knowing the amount of the uncertain gains δG which causes a change in the optimal pair-

ing and knowing the new optimal pairing for the uncertain system are also of importance.

Therefore, more elaboration on the proposed approach in that direction is planned as future

work.
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Appendix

Deriving the expression of ∂φij
∂gkl

The variation of φij (∂φij) with respect to only gij (∂gij) is given by Zhu.17 Thus, generaliza-

tion of the φij variation with respect to variation of all other g′s is essential for calculating the

uncertainty bounds in (14). Employing (5), a relation between φij and gkl can be found to

derive the term ∂φij
∂gkl

. Nevertheless, going in that direction is obviously tedious. Instead, the

chain rule and the expressions ∂λij
∂gkl

by Chen and Seborg9 are used to derive the expressions

of ∂φij
∂gkl

where λij denotes the (ij)−element in the RGA matrix.

The derivation steps are as follows; utilizing the chain rule, ∂φij
∂gkl

can be written as

∂φij
∂gkl

=
∂φij
∂λij

· ∂λij
∂gkl

(35)

From (5), a relation between φij and λij is expressed17 as

φij =
1

λij
− 1 (36)

then
∂φij
∂λij

= − 1

λ2
ij

(37)

Since ∂λij
∂gkl

is given9 as in (38),

∂λij
∂gkl

=



λij(1−λij)
gij

i = k and j = l

−λijλkl
gkl

i = k or j = l

(−1)i+j+k+lgijdet(G
ij,kl)

det(G)
− λijλkl

gkl
i 6= k and j 6= l

(38)

where Gij,kl means the submatrix of G with rows i and k and columns j and l are removed,
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the ∂φij
∂gkl

can be written as in (39).

∂φij
∂gkl

=
∂φij
∂λij

· ∂λij
∂gkl

=



− (1−λij)
λijgij

i = k and j = l

λkl
λijgkl

i = k or j = l

− (−1)i+j+k+lgijdet(G
ij,kl)

λ2ijdet(G)
+ λkl

λijgkl
i 6= k and j 6= l

(39)

Finally, a substitution of

λij =
1

φij + 1

(rearranged from (36)) in (39) is performed to obtain the final expressions of ∂φij
∂gkl

as in (11)

Alternative uncertainty bounds of φPij

Following the approach introduced by Chen and Seborg,9 the uncertainty bounds of the

perturbed RGA elements (λPij) can be written as

λPij︷ ︸︸ ︷
λij −

n∑
k=1

n∑
l=1

|
(
∂λij
∂gkl

)
G

(δgkl) | ≤ λPij ≤ λij +
n∑
k=1

n∑
l=1

|
(
∂λij
∂gkl

)
G

(δgkl) |︸ ︷︷ ︸
λPij

(40)

where λij is the ij-element in RGA calculated based on the nominal system G and ∂λij
∂gkl

is

defined in (38).

Employing (5), the uncertainty bounds of φPij can be calculated as

φPij︷ ︸︸ ︷
1

λPij
− 1 ≤ φPij ≤

1

λPij
− 1︸ ︷︷ ︸

φPij

(41)

However, the user has to be careful if the uncertainty bounds of the λPij crosses the zero,
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in such a case the φPij uncertainty bounds will be the union of two sets as

[−∞, φPij] ∪ [φPij,∞] (42)

and the user has to select the one which encloses the nominal value (φij). For example,

consider a steady-state gain matrix of a binary distillation column46 given as

G(0) =


0.66 −0.61 −0.0049

1.11 −2.36 −0.012

−33.68 46.2 0.87

 (43)

The RGA and the RIA are calculated as

Λ =


1.9454 −0.6737 −0.2718

−0.6643 1.8991 −0.2348

−0.2811 −0.2254 1.5065

 ,Φ =


−0.4860 −2.4844 −4.6794

−2.5053 −0.4734 −5.2598

−4.5573 −5.4361 −0.3362


The uncertainty bounds of the RGA caused by an additive uncertainty δG ≤ 0.1|G(0)| are

given using (40) as

ΛP =


1.2097 ≤ λ11 ≤ 2.6812 −1.2644 ≤ λ12 ≤ −0.0829 −0.7450 ≤ λ13 ≤ 0.2015

−1.2534 ≤ λ21 ≤ −0.0753 1.0061 ≤ λ22 ≤ 2.7921 −0.5464 ≤ λ23 ≤ 0.0769

−0.7606 ≤ λ31 ≤ 0.1984 −0.5361 ≤ λ32 ≤ 0.0853 1.2013 ≤ λ33 ≤ 1.8118


By applying (41) and (42), the uncertainty bounds of ΦP are obtained as

ΦP =


−0.6270 ≤ φ11 ≤ −0.1734 −13.0668 ≤ φ12 ≤ −1.7909 −∞ ≤ φ13 ≤ −2.3422

−14.2791 ≤ φ21 ≤ −1.7979 −0.6418 ≤ φ22 ≤ −0.0061 −∞ ≤ φ23 ≤ −2.8302

−∞ ≤ φ31 ≤ −2.3147 −∞ ≤ φ32 ≤ −2.8653 −0.4481 ≤ φ33 ≤ −0.1676


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Furthermore, to make an accuracy comparison, in term of the absolute error (A.E),

between the Φp uncertainty bounds derived in Section 5 (denoted by ΦS5) and the ones

given here (ΦA2), system (43) with an additive perturbation δG = 0.1× |G(0)| is employed.

The absolute error committed by ΦS5 is

A.ES5 = |Φ(G(0) + δG)− ΦS5(G(0) + δG)| =


0.0361 0.1802 55.1988

0.1468 0.0101 1.4776

2.2692 0.3973 0.0281


while the absolute error committed by ΦA2 is

A.EA2 = |Φ(G(0) + δG)− ΦA2(G(0) + δG)| =


0.0406 0.2062 55.6625

0.1748 0.0134 0.9354

2.7163 0.3746 0.0263


A binary comparison of the both result

A.ES5 < A.EA2 =


1 1 1

1 1 0

1 0 0


shows that the uncertainty bounds derived in Section 5 gives lower absolute error than the

one given here in 6 elements out of 9. However, a general conclusion about which approach

is more accurate can not be drown for just one example.
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Graphical TOC Entry

The input-output pairings for the decentralized control are selected au-
tomatically taking the system uncertainties into consideration.
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